Подключение I2C датчика к LabView

Цель работы: Изучить технологии приема и отображения данных I2C устройства в LabView

Задача работы: Построение канала связи "LabView – I2C датчик".

Приборы и принадлежности: Персональный компьютер, LabView, утилита COM Port Toolkit, контроллер Arduino UNO со средой программирования.

Введение

В этой работе предлагается вариант подключения датчика температуры AD7416 через контроллер Arduino UNO к среде построения виртуальных интерфейсов LabView. Показания датчика считываются контроллером через канал последовательной передачи данных I2C. Контроллер передает считанные данные интегрированной среде LabView по запросу. LabView вычисляет действительное значение температуры и отображает его на виртуальном индикаторе и графопостроителе. Предельная частота приема показаний датчика превышает 300 Гц.

ОБЩИЕ СВЕДЕНИЯ

Характеристика микросхемы AD7416 с встроенным датчиком температуры

Датчик температуры.	
Разрядность	10 бит
Диапазон измерения	-40 125 C
Точность	+/-1С при 25 С
Точность в диапазоне измерения	+/-2C
Разрешение измерения температуры	1/4 C
Время преобразования	30 мкс
Интерфейс	I2C
Напряжение питания микросхемы	2.7 5.5B
Ток потребления	< 0.6 мА в нормальном режиме
	< 1.5 мкА в режиме пониженного потребления
Корпус	8-Lead Standard Small Outline Package (SOIC N)

Корпус

SDA 1		∎voo
SCL 🛛	AD7416	7 A0
оті 🛐	TOP VIEW	6 A1
GND 4	(Notito Scale)	5 A2

Адресный байт микросхемы формируется из фиксированной старшей части (0 1 0 0 1) и устанавливаемых бит A2, A1, A0 на выводах микросхемы. Подключение выводов микросхемы A2 = A1 = "0" (0B) и A0 = "1" (5B) устанавливает двоичный адрес 01001001₂, который соответствует шестнадцатеричному коду 0х49.

Вывод ОТІ микросхемы может использоваться для контурного релейного управления температурные пороги которого (T_{ОТІ} T_{HYST}) прописываются во внутренних регистрах микросхемы.

Рис. 1. Режимы формирования сигнала ОТІ микросхемы AD7416 для релейного управления температурой.

10-разрядный код температуры микросхемы AD7416 считывается в I2C режиме двумя байтами. Старший байт содержит целые значения температуры. Второй байт содержит дробную часть температуры с разрешением 1/4 C, причем, значащие 2 бита дробной части передаются старшими битами. Например, 32.25 градуса считываются как 32C = 00100000, 1/4C = 01000000. Знак отрицательной температуры передается старшим битом первого байта.

Подключение датчика через I2C канал к контроллеру Arduino

Схема подключения датчика температуры AD7416 к контроллеру Arduino показана на Рис. 2.

Рис. 2. Схема подключения датчика температуры AD7416 (адрес 0х49) к контроллеру Arduino по интерфейсу I2C.

Тестовая программа опроса датчика и передача данных датчика в СОМ порт включает следующие команды.

```
#include <Wire.h>
void setup()
{
 Wire.begin();
                  // подключение к шине i2c
 // Установите частоту 100 кГц (если она отличается),
 // Wire.beginTransmission(73); // начало процедуры передачи данных устройству по адресу 73 (0х49)
 // Wire.write(byte(val)); // отправляем байта данных
 // Wire.endTransmission(); // завершение процедуры передачи
 Serial.begin(9600); // запуск последовательного порта
}
void loop()
{
 Wire.requestFrom(73, 2); // запрос 2 байт от слейва #0х49 ог 73
                  // Функция запрашивает данные у ведомого устройства (slave);
                  // 7-битный адрес ведомого устройства, у которого запрашиваются данные
  while(Wire.available()) // пока есть, что читать
                      // получаем байт
  int c = Wire.read();
   Serial.print("t = ");
   Serial.print(c);
                      // передает в порт целое значение температуры
   Serial.print(":");
   c = Wire.read():
                       // получаем байт
   Serial.println(c);
                      // передает в порт дробную часть температуры
 // Serial.println("C");
 }
 delay(100);
}
```

Считанные байты датчика пересылаются контроллером в СОМ порт на частоте 9600 бит/с. Эти данные можно увидеть на внутреннем дисплее среды Arduino в следующем формате.

 $\begin{array}{l} t = 29: 192 \\ t = 29: 128 \\ t = 29: 128 \\ t = 29: 192 \\ t = 30: 0 \\ t = 29: 192 \\ t = 30: 0 \\ t = 29: 192 \\ t = 30: 0 \\ t = 29: 128 \\ t = 29: 64 \\ t = 29: 128 \\ t = 29: 128 \\ t = 29: 128 \end{array}$

Второй байт датчика имеет следующее отношение с дробной частью температуры.

0 == 0	(,00)
64 == 1/4	(,25)
128 == 2/4	(,50)
192 == 3/4	(,75)

Помимо внутреннего дисплея среды Arduino передаваемые в СОМ порт данные можно также увидеть и при помощи других программ, например, утилиты СОМ Port Toolkit (Рис. 3). Утилита показывает, что циклическая запись, например, "t = 29 : 192" передается 12-ю байтами.

COM Port Toolkit 3.8 - UNREGISTERED								
Message View Options Device Help								
- 🖉 🕒 🕨 🔣 🖓 🕮 🖻 🛛	S.			17:03:21				
# Time Sent ASCII	#	Time	Received	ASCII				
	006903	17:03:20.198	20 30 0D 0A 74 20 3D 20 32 35 20 3A 20 36 34	0D 0t = 25 : 64.				
	006904	17:03:20.304	0A 74 20 3D 20 32 35 20 3A 20 36 34 0D 0A 74	20 .t = 25 : 64t				
	006905	17:03:20.493	3D 20 32 35 20 3A 20 31 32 38 0D 0A 74 20 3D	20 = 25 : 128t =				
	006906	17:03:20.599	32 35 20 3A 20 30 0D 0A 74 20 3D 20 32 35 20	3A 25 : 0t = 25 :				
	006907	17:03:20.701	20 36 34 0D 0A 74 20 3D 20 32 35 20 3A 20 31	32 64t = 25 : 12				
	006908	17:03:20.808	38 0D 0A 74 20 3D 20 32 35 20 3A 20 36 34 0D	0A 8t = 25 : 64				
	006909	17:03:20.996	74 20 3D 20 32 35 20 3A 20 30 0D 0A 74 20 3D	20 t = 25 : 0t =				
	006910	17:03:21.103	32 35 20 3A 20 30 0D 0A 74 20 3D 20 32 35 20	3A 25 : 0t = 25 :				
	006911	17:03:21.205	20 36 34 0D 0A 74 20 3D 20 32 34 20 3A 20 31	39 64t = 24 : 19 🔤				
	006912	17:03:21.312	32 0D 0A 74 20 3D 20 32 35 20 3A 20 36 34 0D	0A 2t = 25 : 64 💌				
				•				
h h h h	۲			🕅 Clear				
			port: COM5 baud: 9600 bits: 8 parity: None	stop bits: 1				

Рис. 3. Интерфейс программы COM Port Toolkit. В правой части интерфейса отображаются байты полученные из COM порта и их ASCII символы.

Передача данных контроллера в СОМ порт по запросу

Ниже показана программа контроллера, которая в цикле опрашивает СОМ порт и, при получении от внешнего устройства байта 49 (ASCII код 1), передает в СОМ порт считанный ранее первый байт датчика, а, при получении байта 50 (ASCII код 2), передает в порт считанный ранее второй байт датчика, считывает и запоминает 2 байта текущего показания датчика.

```
#include <Wire.h>
int l2C_first ; // старший (первый) байт l2C
int l2C_second; // младший (второй) байт l2C
int LV_mode;
// Pin 13 has the LED
int led = 13;
void setup()
{
    Wire.begin(); // подключение к шине l2C
```

```
pinMode(led, OUTPUT);
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 Serial.begin(115200); // запуск последовательного порта на частоте 9600, 115200
}
void loop()
ł
 while (!Serial.available()); // ожидание запроса I2C данных
 LV_mode = Serial.read(); // чтение байта запроса и синхронизации LabView
 switch (LV_mode) {
  case 49: { // 49 DEC, ASCII code = 1
   Serial.print(I2C_first,DEC);
                                  // передает в порт целое значение температуры
   break:
  }
  case 50: { // 50 DEC, ASCII code = 2
   Serial.print(I2C_second,DEC);
                                      // передает в порт дробную часть температуры
   // Чтение данных I2C канала для следующей пересылки по запросу
   Wire.requestFrom(73, 2); // запрос 2 байт от слейва #0х49 ог 73
                   // Функция запрашивает данные у ведомого устройства (slave);
   while(Wire.available()) // пока есть, что читать
   {
    I2C first = Wire.read(); // считываем первый байт
    I2C second = Wire.read(); // считываем второй байт
   }
   break:
  }
}
}
```

Использование программы COM Port Toolkit для тестирования связи контроллер - COM порт путем формирования побайтных запросов контроллеру и отображения данных контроллера показано на Рис. 4.

🎝 сом Г	Port Toolkit 3.	8						
<u>M</u> essage	<u>V</u> iew <u>O</u> ptions	s <u>D</u> evice <u>H</u> elp						
- 💽		R 7. 20	- SA					09:35:26
#	Time	Sent	ASCII	#	Time	Received	ASCII	
000001	09:34:23.202	31	1	000001	09:34:23.205	32 30	20	
000002	09:34:27.409	32	2	000002	09:34:27.412	30	0	
000003	09:34:29.020	31	1	000003	09:34:29.023	32 30	20	
000004	09:34:30.422	32	2	000004	09:34:30.425	30	0	
000005	09:34:31.722	31	1	000005	09:34:31.725	32 30	20	
000006	09:34:32.434	32	2	000006	09:34:32.437	36 34	64	
000007	09:34:34.298	31	1	000007	09:34:34.301	32 30	20	
000008	09:34:35.270	32	2	800000	09:34:35.273	30	0	
000009	09:35:03.617	31	1	000009	09:35:03.620	32 30	20	
000010	09:35:07.076	32	2	000010	09:35:07.078	30	0	
000011	09:35:08.653	31	1	000011	09:35:08.656	32 32	22	
000012	09:35:09.858	32	2	000012	09:35:09.861	30	0	
000013	09:35:11.345	31	1	000013	09:35:11.347	32 35	25	
000014	09:35:12.754	32	2	000014	09:35:12.757	31 39 32	192	
				L.				
				•				•
M)	8 B H	•	🕅 Clear	0				🕅 Clear
				por	t: COM12 bau	d: 115200 bits: 8	parity: None	stop bits: 1

Рис. 4. Результат взаимодействия компьютера с контроллером по запросам через программу COM Port Toolkit. Программа настроена на частоту работы контроллера с COM портом - 115200 бит/с. В левой части интерфейса отображаются передаваемые в COM порт байты запроса (в шестнадцатеричном виде и ASCII кодах). В правой - байты контроллера принимаемые из COM порта.

Панель и структура виртуального прибора LabView для циклической генерации побайтных запросов, приема и отображения данных контроллера показана на Рис. 5. Прибор LabView инициализирует COM порт (блок "VISA Configure Serial Port"), очищает буфер (блок "VISA Clear") и с периодом 100 мс (блок "Wait Until Next ms Multiply") выполняет следующие операции:

- посылает в СОМ порт ASCII код 1 (блок "VISA Write");
- ожидает 10 мс (блок "Wait, ms");
- считывает количество байт, поступивших в буфер СОМ порта (блок "Property Node");
- считывает поступившие байты (блок "VISA Read");
- отображает на панели виртуального прибора строку принятых байт (блок "String");
- переводит строку в значение первого байта датчика температуры (блок "Decimal String To Number");
- отображает первый байт датчика на панели виртуального прибора (блок "Numeric");
- посылает первый байт (целая чать температуры) на сумматор (блок "Add");
- второй байт датчика температуры принимается по запросу и преобразуется в число с использованием таких же блоков, которые описаны выше для приема первого байта;
- дробная часть температуры получается делением второго байта на 256 (блок "Divider");
- полное значение температуры вычисляется сложением первого байта и дробной части (блок "Add");
- временная диаграмма показаний датчика температуры строится на графопостроителе (блок "Waveform Chart");

- взаимодействие LabView с контроллером прекращается в момент нажатия пользователем на кнопку "stop" (блок "Stop");
- после нажатия на кнопку "stop" блоки "VISA Close" и "Error" закрывают СОМ порт и завершают работу виртуального прибора.

Рис. 5. Лицевая панель и структура виртуального прибора LabView для приема и отображения показаний датчика температуры. Каждый байт датчика принимается по индивидуальному запросу.

К недостаткам вышеописанной организации подключения I2C датчика температуры к LabView можно отнести задержку в 100 мс на ожидание такта передачи данных датчика и 20 мс на саму передачу. Передача контроллером байта датчика через СОМ порт по формату Serial.print(XXX, DEC) выполняется посимвольно - каждая цифра числа передается отдельным байтом.

Форматы передачи данных в СОМ порт

- Serial.print(78, BIN) выводит посимвольно "1001110"
- Serial.print(78, ОСТ) выводит "116"
- Serial.print(78, DEC) выводит "78"
- Serial.print(78, HEX) выводит "4E"
- Serial.println(1.23456, 0) выводит "1"
- Serial.println(1.23456, 2) выводит "1.23"
- Serial.println(1.23456, 4) выводит "1.2346"
- Serial.write(210) выводит байт данных, который принимается LabView строкой D2

ПРИМЕРЫ ПОЛУЧЕНИЯ ПРОВЕРЕННЫХ РЕЗУЛЬТАТОВ И ВАРИАНТЫ ДЛЯ САМОКОНТРОЛЯ

Задание 1. Подключение I2C датчика к LabView на повышенной частоте передачи данных по запросу.

1. Для контроллера Arduino UNO разработайте программу считывания показаний I2C датчика AD7416 и передачу их в COM порт по запросу. Пример программы приведен ниже.

```
#include <Wire.h>
int I2C first : // старший (первый) байт I2C
int I2C second: // младший (второй) байт I2C
int LV mode:
// Pin 13 has the LED
int led = 13:
void setup()
{
 Wire.begin();
                  // подключение к шине I2C
 pinMode(led, OUTPUT);
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 Serial.begin(115200); // запуск последовательного порта на частоте 9600, 115200
}
void loop()
{
 while (!Serial.available()); // ожидание запроса I2C данных
 LV_mode = Serial.read(); // чтение байта запроса и синхронизации LabView
 switch (LV_mode) {
  case 49: { // 49 DEC, ASCII code = 1
   Serial.write(I2C_first); // передает в порт байт целого значения температуры
   Serial.write(I2C second);
                                // передает в порт байт дробного значения температуры
   // Чтение данных I2C канала для следующей пересылки по запросу
   Wire.requestFrom(73, 2); // запрос 2 байт от слейва #0х49 ог 73
                    // Функция запрашивает данные у ведомого устройства (slave);
   while(Wire.available()) // пока есть, что читать
    I2C_first = Wire.read(); // считываем первый байт
    I2C second = Wire.read(); // считываем второй байт
   }
   break;
  }
 }
}
```

2. Проверьте работу программы контроллера с использованием утилиты COM Port Toolkit.

COM P	ort Toolkit 3.8	B					
<u>M</u> essage	View Options	; <u>D</u> evice <u>H</u> elp)				
							07:29:39
#	Time	Sent	ASCII	#	Time	Received	ASCII
000001	07:28:13.932	31	1	000001	07:28:13.934	18 40	.@
000002	07:28:17.439	31	1	000002	07:28:17.441	18 40	.@
000003	07:28:24.264	31	1	000003	07:28:24.267	18 00	
000004	07:28:31.482	31	1	000004	07:28:31.484	18 40	.@
000005	07:28:35.091	31	1	000005	07:28:35.093	1A 40	.@
🐝 🐝 🐝 🛍 Clear 🔮 💼 Clear							🕅 Clear
			port: C	OM5 ba	ud: 115200 bits: 8	parity: None	stop bits: 1

Рис. 6. Передача в СОМ порт байта 31₁₆ (ASCII код равен 1) запускает контроллер на передачу в СОМ порт двух байт датчика, считанных на предыдущем запросе.

3. Разработайте структуру виртуального прибора в LabView, который посылает запрос контроллеру Arduino UNO, получает и отображает показания датчика температуры на максимальной частоте.

Рис. 7. Структура виртуального прибора LabView. Система за 10 секунд принимает 2000 показаний датчика температуры, формирует и отображает вектора из принимаемых данных размером 100 единиц.

Рис. 8. Интерфейс виртуального прибора LabView для отображения значений температуры. Для контроля на экран выводятся значения принимаемых байт в формате строки и числовом формате.

4. Проверьте работоспособность структуры I2C датчик - интерфейс виртуального прибора LabView.

контрольные вопросы

- 1. Чем ограничена максимальная частота приема и отображения показаний I2C датчика в LabView?
- 2. Как влияет изменение размерности вектора принимаемых данных температурного датчика на скорость отображения данных?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Dr. Bob Davidov. Среда разработки интерфейсов и программных модулей систем управления LabVIEW <u>http://portalnp.ru/wp-content/uploads/2013/10/06.04 LabView-as-tool-for-control-system-design_Ed5.pdf</u>
- 2. Dr. Bob Davidov. Управление COM портом в LabView <u>http://portalnp.ru/wp-content/uploads/2013/09/08.05_COM-port-control-in-LabView_Ed_31.pdf</u>
- 3. Dr. Bob Davidov. Обмен данными через COM port <u>http://portalnp.ru/wp-</u> content/uploads/2013/09/09_09_Communication-via-COM-port_Ed_51.pdf
- 4. Dr. Bob Davidov. Компьютерные технологии управления в технических системах <u>http://portalnp.ru/author/bobdavidov</u>.