Теория определения координат точки, находящейся в пространстве 5- и 7-мерной произвольно-угольной системы координат

1. Определение координат точки в 5-мерном пространстве

В уже известной работе данного автора "Peaльная многомерная произвольно-угольная система координат" (optimat.ucoz.ru) вопросу определения координат точки, находящейся в пространстве названной системы координат, уделено внимание недостаточное. Поэтому данная статья и предназначена для устранения этого пробела. Она, к тому же, является весомым дополнением к выше упомянутой работе.

Текст данной статьи состоит, в основном, из рисунков и коротких комментариев к ним. Начертание рисунков предполагает совместное использование как аксонометрии, так и планиметрии. Но в отдельных случаях, когда это возможно без ущерба объективности восприятия рисунка применена лишь более простая планиметрия.

Следует также учитывать и то, что по правилам тригонометрии невидимые линии принято изображать штриховыми. Но, учитывая то, что на столь специфических рисунках важнее, чтобы координаты выглядели однозначно, приходится этим правилом пренебречь.

В каркасах рисунков некоторых размерностей для большей наглядности отсутствуют необязательные или незначащие их элементы.

Определение координат точки в 5-мерном пространстве произвольноугольной системы координат отличается, естественно, от их определения в пространстве системы координат прямоугольной трёхмерной. Но параллельноплоскостной подход сохраняется и здесь. Добавлю, что здесь определение координат точки в пространстве произвольно-угольной многомерной системы координат осуществляется на фоне того факта, что они, координаты, проверяются на предмет того, отвечают ли они требованиям уравнения прямой (по двум известным точкам), проходящей через данную точку \boldsymbol{A} , потому и сама данная методика определения приобретает статус несомненности.

Примечание: число 5 (5-мерная ...) относится к классу простых чисел. Может быть это обстоятельство является одной из причин простоты определения координат точки в пространстве 5-мерной произвольно-угольной системы координат.

Пример:

Дана 5-мерная произвольно-угольная система координат (в планиметрии), и в ней — произвольная точка A, координаты которой требуется определить (рис.1)

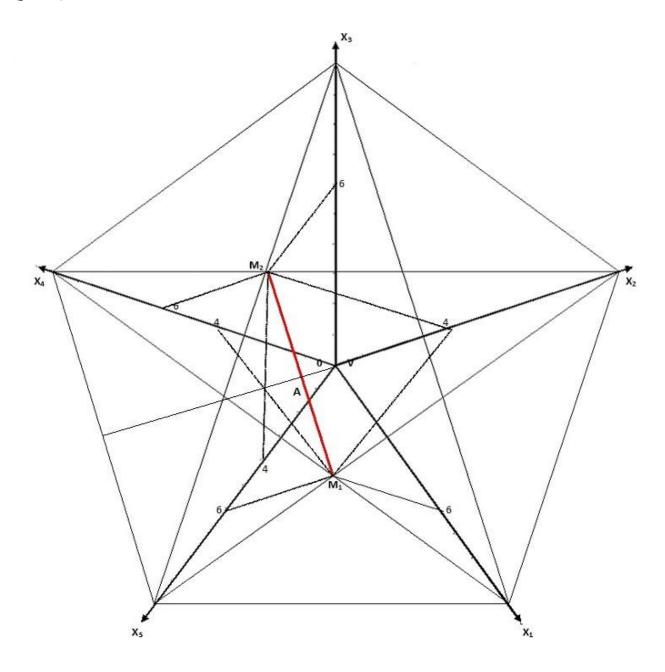


Рис.1

Пояснения к рис.1:

- цифры на осях координат указывают координаты точек M_1 и M_2 ,
- т. A лежит на пересечении биссектрисы угла X_40X_5 и прямой M_1M_2 ,

Из рис.1 видны координаты точек M_1 и M_2 . Они таковы:

$$M_1(6; 4; 2.4; 4; 6)$$
 и $M_2(2.4; 4; 6; 6; 4)$

По ним построим уравнение прямой. Но сначала определим направляющий вектор $\overline{MIM2}$ по формуле

$$M\overline{1M2}(x_{21}-x_{11}; x_{22}-x_{12}; x_{23}-x_{13}; x_{24}-x_{14}; x_{25}-x_{15}),$$

т. е.

$$M\overline{1M2(2.4-6;4-4;6-2.4;6-4;4-6)}$$

или

$$\overline{M1M2(-3.6; 0; 3.6; 2; -2)}$$
,

Теперь можно записать уравнение прямой, проходящей через эти точки –

$$M_1(6; 4; 2.4; 4; 6)$$
 и $M_2(2.4; 4; 6; 6; 4)$
$$\frac{x_{1-6}}{x_{3-6}} = \frac{x_{2-4}}{x_{3-6}} = \frac{x_{3-2.4}}{x_{3-6}} = \frac{x_{3-4}}{x_{3-6}} = \frac{x_{3-6}}{x_{3-6}}$$

Примечание: здесь индексы координат ($_1$, $_2$, $_3$, $_4$ и $_5$ оказались выше роста своих обладателей — не позволяет сделать это правильно их необходимое присутствие в формульных записях - но воспринимать их надо как ростом ниже).

Проверка: Подставим координаты точки M_1 (6; 4; 2.4; 4; 6) в полученные уравнения

$$\frac{6-6}{-3.6} = \frac{4-4}{0} = \frac{2.4-2.4}{3.6} = \frac{4-4}{2} = \frac{6-6}{-2}$$

$$0 = 0 = 0 = 0 = 0$$

Получены верные равенства. Уравнение верное.

Подставим координаты точки M_2 (2.4; 4; 6; 6; 4) в полученные уравнения

$$\frac{2.4-6}{-3.6} = \frac{4-4}{0} = \frac{6-2.4}{3.6} = \frac{6-4}{2} = \frac{4-6}{-2}$$

$$1 = 0 = 1 = 1 = 1$$

Получены верные равенства. Уравнение верное.

Общей методикой в определении координат точки A является то, что, как и в трёхмерной прямоугольной системе координат, координата считывается с точки прохождения секущей плоскости, параллельной соответствующей координатной плоскости, через координатную ось. На рис.2 показан образец построения секущей плоскости, параллельной координатной плоскости, а также — отмечена координата как место пересечения секущей плоскости с координатной осью, т. е. $x_5 = 5$.

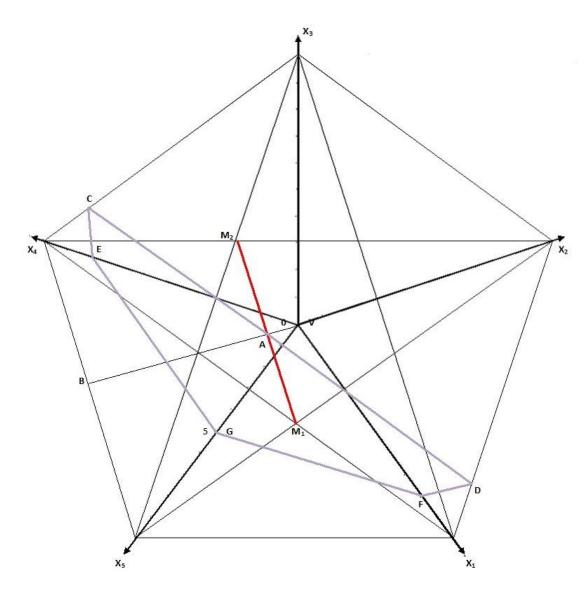
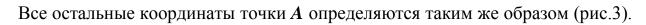


Рис.2

Пояснения к рис.2:

- секущая плоскость CDFGE параллельна координатной плоскости X_20X_3 ,
- на координатной оси X_5 отмечена координата $x_5 = 5$,
- прямая CE параллельна прямой $0X_3$,
- прямая DF параллельна прямой θX_2 ,
- прямая EGпараллельна прямой $0X_I$,
- прямая FG параллельна прямой ∂X_4 .



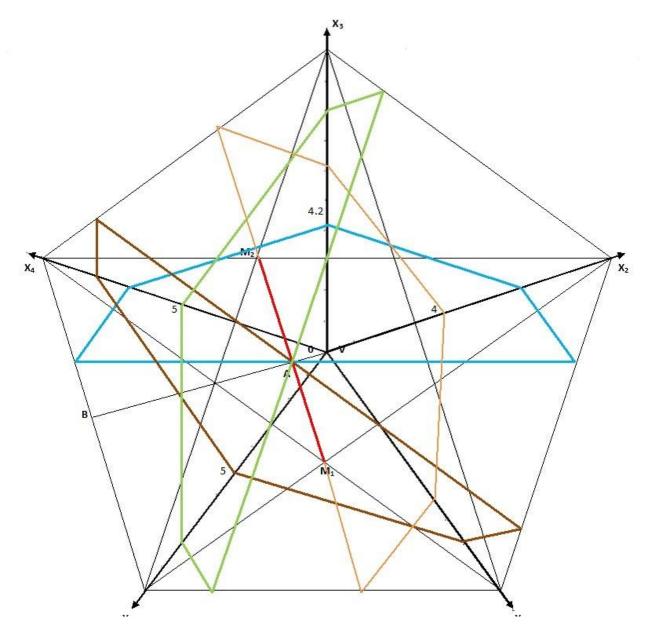


Рис.3

По рисункам 2 и 3 видны координаты точки A.

Они следующие:

Для проверки правильности полученных координат подставим их в уравнение прямой $M_1 M_2$.

$$\frac{4.2-6}{-3.6} = \frac{4-4}{0} = \frac{4.2-2.4}{3.6} = \frac{5-4}{2} = \frac{5-6}{-2}$$

$$0.5 = 0 = 0.5 = 0.5 = 0.5$$

Таким образом, в результате составления канонического уравнения прямой M_1M_2 , а также — получения по показанной на рисунке 2 графической методике координат произвольной точки A, подтверждённой тем, что они отвечают требованиям канонического уравнения прямой M_1M_2 , на которой она находится, можно сделать вывод, что показанная методика графического определения координат в пространстве произвольно-угольной четырёхмерной системы координат правомочна.

2. Определение координат точки в 7-мерном пространстве

При определении координат точки в 7-мерном пространстве используется та же методика, что и при определении координат точки в 5-мерном пространстве. Поэтому автор ограничился лишь показом двух рисунков с короткими комментариями, к тому же счёл излишним использование при этом уравнения прямой, проведённой через данную точку.

Пример: в 7-мерном пространстве дана произвольная точка A, координаты которой требуется определить.

Решение.

На рис.4 в качестве образца приведено определение лишь координаты точки $A-x_7$.

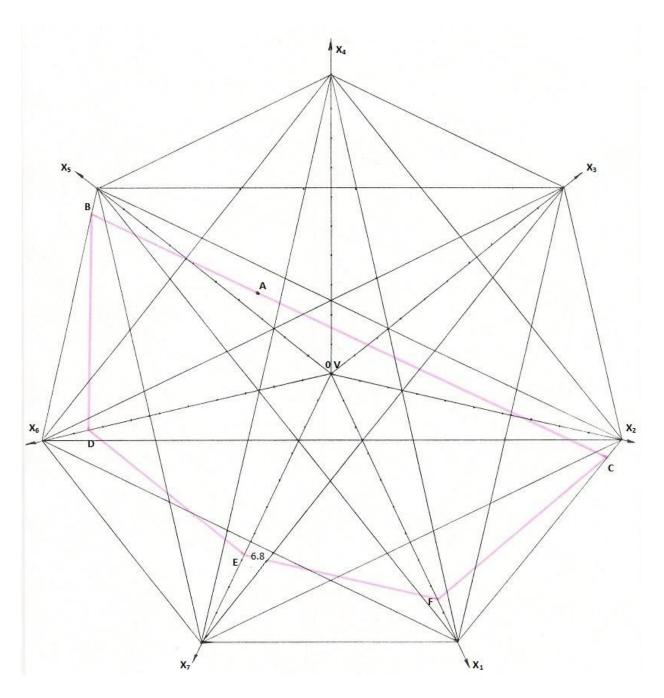


Рис.4

Пояснения к рис.4:

- A произвольная точка,
- прямая BC параллельна X_3X_4 ,
- прямая BD параллельна ∂X_4 ,
- прямая CF параллельна θX_3 ,

- прямая FE параллельна ∂X_2 ,
- прямая DE параллельна θX_5 , секущая плоскость BCFED, параллельная координатной плоскости $X_3\theta X_4$, отмечает на координатной оси x_7 величину 6.8, т. е. $x_7 = 6.8$.

Определение остальных координат точки A без комментариев показано (по примеру x_7) на рис. 5.

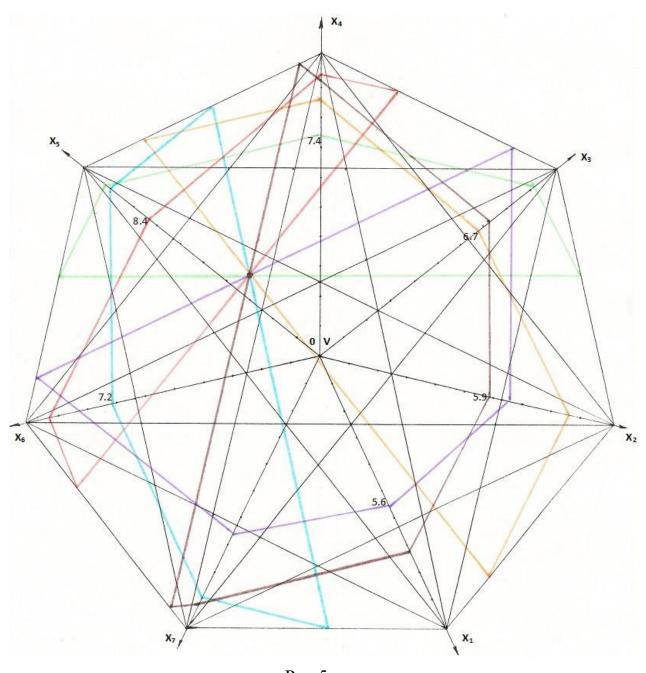


Рис.5

Таким образом, точка \boldsymbol{A} имеет координаты

A(5.6;5.9;6.7;7.4;8.4;7.2;6.8).

Конец статьи