DR. BOB DAVIDOV

Многоканальное устройство ввода и накопления аналоговых данных на базе MS Excel

Цель работы: познакомиться с macros технологиями для решения задач управления и мониторинга в неспециализированной среде MS Excel.

Задача работы: построение системы ввода, обработки и накопления аналоговых данных на базе электронных таблиц и USB/RS-232 интерфейса Arduino.

Приборы и принадлежности: Персональный компьютер, MS Excel, платформа Arduino UNO, МатЛАБ.

введение

Электронные таблицы MS Excel можно использовать не только как средство обработки и накопления данных но и для управления реальными объектами и мониторинга, например, через интерфейс USB/RS-232. В этой работе раскрываются особенности системы чтения, обработки и накопления реальных аналоговых данных на базе Excel и платформы Arduino структурная схема которой показана на Рис. 1.

Рис. 1. Блок-схема системы накопления аналоговых данных, их фильтрации, обработки и накопления на базе MS Excel и платформы Arduino.

ОБЩИЕ СВЕДЕНИЯ

Платформа Arduino UNO

В этой работе Arduino UNO работает как устройство ввода аналоговых сигналов на максимальной частоте, накопления и усреднения данных перед их отправкой в последовательный канал передачи.

Рис. 2. Периферия платформы ARDUINO (DFRduino) UNO.

Платформа Arduino UNO имеет следующие характеристики.

- Микроконтроллер АТтеда 328, частота 16 МНz,
- Напряжение питания: 7-12 В (6-20 В предел). Вход используется для подачи питания от внешнего источника (в отсутствие 5 В от разъема USB).
- 32 Кб флэш память (2К занято загрузчиком),
- 2Кб ОЗУ
- 1Кб EEPROM
- 6 аналоговых (0-5В, 10бит, 0.1мс) вводов и 14 цифровых вводов/выводов с 6 РWM (ШИМ) выходами (~490 Гц, 0 .. 255)
- Входной ток ADC: 0..1 мкА
- Встроенные USB-COM (300, ..., 115200 бод), SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK), и I2C: 4 (SDA) и 5 (SCL)каналы связи;
- 2 внешних прерывания

Примечание. Порядок подключения драйвера платформы, среды разработки, и базовых библиотек можно найти в "Создание интерактивных объектов и сред на базе платформы Arduino. Часть 1" на <u>http://www.vr-online.ru/blog/sozdanie-interaktivnyh-obektov-i-sred-na-baze-platformy-arduino-chast-2-7969</u> и в "Создание интерактивных объектов и сред на базе платформы Arduino. Часть 2" на <u>http://www.vr-online.ru/blog/sozdanie-interaktivnyh-obektov-i-sred-na-baze-platformy-arduino-chast-2-7969</u>

Датчик температуры LM335

Особенности датчика температуры LM335:

• Непосредственное измерение температуры в град.К

•	Диапазон измеряемых температур	-40 +100 °C
•	Точность	1°C

10мВ/°С

• Отношение выходного напряжения к температуре

- Выходное рабочее напряжение при 25С и токе 1мА 2.92 .. 2.98 В
 - Постоянная времени в
 80 сек

 стоячем воздухе
 80 сек

 движущемся воздухе (~5 мм/сек)
 10 сек

 движущемся масле
 1 сек
- Динамический импеданс < 1 Ом
- Низкая стоимость ~18 руб.(август 2013 г.)

Рис. 3. Схемы включения датчика температуры LM335 без регулировки (контакт ADJ, N.C.).

Датчик влажности HIH-4000-002

Датчик влажности HIH-4000-002 имеет следующие характеристики.

- -40 °C to 85 °C Диапазон рабочих температур • Диапазон измеряемой влажности 0% RH to 100 % RH. • здесь и далее **RH** – относительная влажность Погрешность ±5 % RH (0 .. 59% RH), ±8 % RH (60 .. 100% RH) • • Гистерезис ±3 %RH • Время отклика 15 сек (тау) в медленно движущемся воздухе • Повторяемость ±0.5 % RH Время включения 70 мсек макс. ٠
- Питание
- Дрейф

•

- Стабильность при 50% RH
- ±1.2 % RH за 5 лет; ±0.25 % RH за год
 - ±1.2 %RH

 $+5.8 \text{ B} / 500 \mu \text{A}$

Рис. 4. Рекомендуемая рабочая зона температуры и влажности.

Рис. 5. Размеры датчика НІН-4000-002.

Рис. 6. Зависимость выходного напряжения датчика от влажности аппроксимированная полиномом первой (слева) и второй (справа) степени.

Для расчета влажности по выходному напряжению датчика и введению поправок по напряжению питания и температуры датчика необходимо использовать следующие отношения.

Выходное напряжение датчика:

Vout = Vsupply (0.0062 (sensor RH) + 0.16), полином 1-ой степени

Vout = 0.00003^{*} (sensor RH)² + 0.0281^{*} (sensor RH) + 0.820 для 25С, полином 2-ой степени

Температурная компенсация:

Vout= $(1.0305+0.000044T-0.0000011T^2)$ *(Sensor RH) + (0.9237- 0.0041T+0.000040T²), где T – температура в °C

Точка росы

Для вычисления точки росы (температуры, до которой должен охладиться воздух, чтобы достичь состояния насыщения водяным паром при данном влагосодержании и неизменном давлении) можно использовать показания датчиков температуры и влажности и графики, приведенные на Рис. 7.

Рис. 7. Вычисление точки росы по температуре и относительной влажности.

Подключение датчиков к ADC платформы Arduino UNO

Рис. 8. Подключение датчика температуры LM335 к 1-му входу ADC (A0) и датчика влажности HIH-4000-002 к 3-му входу ADC (A2).

Сигнальный провод

Для подключения удаленных (до 15 метров) датчиков используется 4-х жильный сигнальный провод с сопротивлением 28 Ом / 50 м.

Калибровка датчиков.

Для калибровки датчиков можно использовать показания аттестованных калиброванных датчиков, установленных в той же точке измерения.

Для приближенного контроля показаний датчика температуры можно использовать следующие характерные температуры.

- 0°С температура подтаявшего льда. Внимание: температура льда из морозильной камеры холодильника может быть значительно ниже.
- 36.6 °С температура тела под языком.
- ~100 °C температура кипящей воды. Держите контакты датчика сухими. Вода может изменить межконтактное сопротивление и, соответственно, показания датчика.

Для приближенного контроля показаний датчика влажности можно использовать дыхание параметры которого обсуждаются в статье "Parameters of the exhaled breath" <u>http://www.sciencebits.com/exhalecondense</u>: "Распространенным заблуждением является то, что выдыхаемый воздух имеет 100% влажность при 37 °C. Если бы это было так, мы бы увидели конденсацию при любых условиях наружного воздуха холоднее, чем 37 °C. Очевидно, что это не так!", "... Таким образом, воздух, выходящий из наших уст имеет температуру около 35°C и 95% влажность.

Команда	Описание				
Serial.begin(9600);	Установка скорости передачи данных через СОМ порт (RS-232) из ряда:				
	300, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200 бод (бит/с)				
Serial.flush();	Очистка входного буфера СОМ порта				
int led = 13; pinMode(led, OUTPUT);	Установка режима работы TTL порта Arduino (OUTPUT - на выход). К 13 порту подключен светодиод который используется для демонстрации цикличной работы Arduino				
digitalWrite(led, LOW); digitalWrite(led, HIGH);	Включение и выключение светодиода платформы подключенного к 13-му TTL-порту				
void loop() {}	Циклическое выполнение операторов помещенных в фигурные скобки				
int adc_0; adc_0 = analogRead(0);	Чтение первого (нулевого) канала 10 разрядного 5В 0.1 мс АЦП				
Serial.write(adc_0_Lo);	Запись в СОМ-порт байта 0 127				
unsigned long adc_0_sum = 0;	Накопление и подсчет ADC данных				
int loop_num = 0;					
adc_0_sum = adc_0_sum + adc_0;					

Полезные команды Arduino UNO

loop_num = loop_num + 1;						
if (loop_num > 30000) { adc_0_sum = 0;	Защита от переполнения накопления данных					
}						
if (Serial.available() > 0) {}	Проверка прибытия данных через СОМ порт . Используется для синхронизации Excel средой процессов в Arduino					
ctrl_num = Serial.read();	Считывание данных из СОМ порта					
adc_0 = (adc_0_sum * 16) / loop_num;	Вычисление среднего значения, используется для фильтрации АЦП сигналов и повышения виртуальной разрядности АЦП до 14 бит					
adc_0_Hi = ((adc_0 >> 7) & 0x7F);	Выделение младшей половины 14-разрядного среднего					
adc_0_Hi = ((adc_0 >> 7) & 0x7F);	Выделение старшей половины 14-разрядного среднего					
Serial.write(adc_0_Hi); // in 0 127 data range Serial.write(adc_0_Lo)	Передача в СОМ-порт старшей и младшей половины 14- разрядного значения усредненного результата накопления 10-разрядных данных АЦП					

Полезные команды Macros и MS ActiveX control

Команда	Описание			
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)	Подключение системного таймера для выполнения задержек. Пример команды "задержка на одну секунду":			
	Sleep 1000&			
Sub CommandButton1_Click()	Начало и конец подпрограммы			
End Sub				
Dim StopMacro As Boolean	Инициализация глобальной / локальной переменной в зависимости от того где расположен оператор Dim - за пределами или внутри программного блока.			
For i = 1 To 10000 Next i	Пример оператора цикла			
DoEvents If StopMacro Then Exit For	Пример выхода из цикла For. Оператор DoEvents необходим перед использованием глобальных переменных			
MSComm1.CommPort = 3 MSComm1.Settings = "9600,N,8,1" MSComm1.InputLen = 0 On Error Resume Next MSComm1.PortOpen = True	Подключение к СОМ порту и настройка его параметров			

If Err Then MsgBox "Com" & MSComm1.CommPort & ": not available. Change CommPort property to another port." Exit Sub End If	Выдача сообщения об ошибке соединения с СОМ-портом
MSComm1.PortOpen = False	Закрытие СОМ порта
Set oXL = New Excel.Application Set oBook = oXL.Workbooks.Open("D:\pc\LONG_ADC_Arduino_Read\DataBase_1.xls") Set oSheet = oBook.Worksheets("Sheet1")	Пример открытия страницы внешней (по отношению к macros) электронной таблицы Excel
Set oSheet = Nothing oBook.Close True ' without False displays Message Set oBook = Nothing oXL.Quit	Пример закрытия внешнего Excel файла
Set oXL = Nothing	
'ActiveWorkbook.Close True 'ActiveWorkbook.Close False	
MSComm1.Output = Chr\$(1)	Запись единицы в СОМ порт для синхронизации процессов Arduino
b = MSComm1.Input	Считывание данных из буфера СОМ порта
Sheet1.Cells(5, 1).Value = i	Запись в ячейку Excel (в которой работает macros) переменной і
exampleDate = Now	Чтение системной даты и времени
Sheet1.Cells(5, 8).Value = Hour(exampleDate) Sheet1.Cells(5, 12).Value = Month(exampleDate)	Выделение из переменной exampleDate значений текущего часа и месяца
oSheet.Cells(Offset, 1).Value = Offset - 4	Запись в ячейку внешней Excel значения Offset - 4
Application.DisplayAlerts = False ThisWorkbook.Save Application.DisplayAlerts = True Application.Quit	Закрытие Excel c macros
UserForm1.Show ThisWorkbook.Save	Команда Workbook для автоматического запуска macros

Примечание. Команда <Ctrl + Break> останавливает работу macros.

Примеры ActiveX control можно найти в работе "COM/DCOM клиент и сервер автоматизации Microsoft ActiveX control" [4].

ПРИМЕРЫ ПОЛУЧЕНИЯ ПРОВЕРЕННЫХ РЕЗУЛЬТАТОВ И ВАРИАНТЫ ДЛЯ САМОКОНТРОЛЯ

Задание 1. Подключение и настройка платформы Arduino UNO.

1. Подключите два датчика температуры к первому и второму входам АЦП (А0 и А1) и четыре датчика влажности к остальным входам по схеме показанной на Рис. 8.

Примечание. Можно подключить любые другие датчики в любом порядке или не подключать их вовсе. Эти варианты потребуют соответствующей коррекции скрипта обработки и отображения аналоговых данных.

- 2. Загрузите интегрированную среду разработки и настройте драйвер платформы Arduino, например, как показано в разделе ПОДГОТОВКА К РАБОТЕ С ARDUINO ЧЕРЕЗ ИНТЕГРИРОВАННУЮ СРЕДУ РАЗРАБОТКИ работы "Создание интерактивных объектов и сред на базе платформы Arduino. Часть 1" <u>http://www.vr-online.ru/blog/sozdanie-interaktivnyh-obektov-i-sred-na-baze-platformy-arduino-chast-1-7947</u>
- 3. Используя команды Arduino, приведенные в таблице выше, разработайте программу которая для каждого канала 6-канального 10-разрядного АЦП считывает показания, накапливает и подсчитывает их, а в момент поступления запроса (числа) от Excel через СОМ-порт, вычисляет среднее значение АЦП увеличенное в 16 раз (4 разряда), округляет его до 14-разрядов, и двумя байтами посылает среднее значение в СОМ-порт.

Ниже дан пример реализации заданного алгоритма. /* Communication with Excel in RT mode

created 24 August 2013 modified by Bob Davidov

Reads from 10-bit ADC (6 channels) Passes the ADC averages of 14 bits to COM port by two bytes each in 0 .. 127 range Order of sensors connected to ADC ports: adc_0, adc_1, adc_2, adc_3, adc_4, adc_5, temp1, temp2, hum1, hum2, hum3, hum4

This example code is in the public domain. */ byte ctrl_num; // control num of 0 .. 127 from Excel int led = 13; // control LED int adc_0; // 10 bit ADC 0 .. 5V

int adc_1; int adc_2; int adc_3; int adc_4; int adc_5;

```
unsigned long adc 0 sum = 0; // for sum of adc i
unsigned long adc_1_sum = 0;
unsigned long adc_2_sum = 0;
unsigned long adc_3_sum = 0;
unsigned long adc_4_sum = 0;
unsigned long adc_5_sum = 0;
int loop_num = 0; // number of asc_i reading
byte adc_0_Hi; // high byte (in 0 .. 127 range) of 14 bit average
byte adc_1_Hi;
byte adc_2_Hi;
byte adc_3_Hi;
byte adc_4_Hi;
byte adc_5_Hi;
byte adc_0_Lo;
byte adc_1_Lo;
byte adc_2_Lo;
byte adc_3_Lo;
byte adc_4_Lo;
byte adc_5_Lo;
void setup() {
 // Open serial communications and wait for port to open:
 Serial.begin(9600); //300, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200
 Serial.flush(); // clear input buffer
 pinMode(led, OUTPUT);
}
void loop() {
 // read ADC
 adc_0 = analogRead(0);
 adc_1 = analogRead(1);
 adc_2 = analogRead(2);
 adc 3 = analogRead(3);
 adc_4 = analogRead(4);
 adc_5 = analogRead(5);
 // sum of captured data
 adc_0_sum = adc_0_sum + adc_0;
```

adc_1_sum = adc_1_sum + adc_1; adc_2_sum = adc_2_sum + adc_2; adc_3_sum = adc_3_sum + adc_3;

```
adc_4_sum = adc_4_sum + adc_4;
adc_5_sum = adc_5_sum + adc_5;
// number of adc reading
loop_num = loop_num + 1; // ~ 0 .. 180 lopps per 0.1 ms
if (loop_num > 30000) { // protection against long delay in data reading
 adc_0_sum = 0;
 adc_1_sum = 0;
 adc_2_sum = 0;
 adc 3 sum = 0;
 adc_4_sum = 0;
 adc_5_sum = 0;
}
// get any incoming bytes:
if (Serial.available() > 0) {
 ctrl_num = Serial.read(); // 0 .. 255 from excel
 switch (ctrl_num) {
 case 1:
  digitalWrite(led, HIGH); // switch on the LED
  adc_0 = (adc_0_sum *16) / loop_num; // int: average of adc x 16
  adc_1 = (adc_1_sum * 16) / loop_num;
  adc 2 = (adc 2 sum * 16) / loop num;
  adc_3 = (adc_3_sum * 16) / loop_num;
  adc_4 = (adc_4 sum * 16) / loop_num;
  adc_5 = (adc_5_sum *16) / loop_num;
  adc_0_Hi = ((adc_0 >> 7) \& 0x7F); // byte: high half (7 bit) of 14 bit adc data (int word)
  adc_1_Hi = ((adc_1 >> 7) & 0x7F);
  adc_2_Hi = ((adc_2 >> 7) & 0x7F);
  adc_3_Hi = ((adc_3 >> 7) \& 0x7F);
  adc_4_Hi = ((adc_4 >> 7) \& 0x7F);
  adc_5_Hi = ((adc_5 >> 7) \& 0x7F);
  adc_0_Lo = (adc_0 \& 0x7F);
                                   // byte: low half of 14 bit adc data (int word)
  adc_1_Lo = (adc_1 \& 0x7F);
  adc 2 Lo = (adc 2 \& 0x7F);
  adc_3_Lo = (adc_3 \& 0x7F);
  adc_4_Lo = (adc_4 & 0x7F);
  adc_5_Lo = (adc_5 & 0x7F);
  Serial.write(adc_0_Hi); // in 0 .. 127 data range
  Serial.write(adc 0 Lo);
  Serial.write(adc_1_Hi);
  Serial.write(adc_1_Lo);
```

```
Serial.write(adc_2_Hi);
  Serial.write(adc_2_Lo);
  Serial.write(adc 3 Hi);
  Serial.write(adc_3_Lo);
  Serial.write(adc_4_Hi);
  Serial.write(adc 4 Lo);
  Serial.write(adc_5_Hi);
  Serial.write(adc 5 Lo);
  // reset sum of adc data
  adc 0 sum = 0;
  adc 1 sum = 0;
  adc_2 = 0;
  adc 3 \text{ sum} = 0;
  adc 4 sum = 0;
  adc_5_sum = 0;
  loop num = 0;
  digitalWrite(led, LOW); // switch off the LED
  break;
 default:
  break;
 }
}
```

4. При помощи интегрированной среды запишите программу в память платформы Arduino.

Задание 2. Настройка MS Excel на работу с СОМ портом.

- 1. Установите соединение Excel с COM-портом, например, как показано в разделе ОБЩИЕ СВЕДЕНИЯ и в задании 2 работы "Управление из Excel через COM порт" <u>http://www.vr-online.ru/blog/upravlenie-iz-excel-cherez-com-port-8475</u>
- 2. Проверьте работу соединения

}

Задание 3. Считывание аналоговых данных в Excel.

1. Используя команды Macros, приведенные в таблице выше, разработайте программу которая циклически устанавливает связь с СОМ-портом, через СОМ порт передает платформе Arduino код синхронизации, принимает усредненные данные АЦП платформы, системную дату и время операционной среды и отображает принятые данные в ячейках электронной таблицы и разрывает соединение с СОМ-портом.

Примечание. Для получения корректного значения усредненного сигнала АЦП не забудьте поделить на 16 увеличенное в Arduino значение АЦП.

Ниже дан пример реализации заданного алгоритма. Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long) Dim StopMacro As Boolean

```
Private Sub CommandButton1 Click()
 Dim b() As Byte ' for COM port Input buffer reading
 ' for saving data in external xls file:
 For i = 1 To 10000
  MSComm1.CommPort = 3
  MSComm1.Settings = "9600,N,8,1"
  MSComm1.InputLen = 0
  On Error Resume Next
  MSComm1.PortOpen = True
  Sleep 1000& 'Delay for 1 second
  'start Arduino sending of ADC 14 bit averages into COM port
  MSComm1.Output = Chr$(1) 'LED High
  Sleep 500& 'Delay for 0.5 second
  b = MSComm1.Input 'reading ADC data
  'ADC 10 bit average = (Hi byte x 128 + Lo byte) / 16
  'Arduino averages ~730 ADC samples each excel loop with 0.5 s delay
  Sheet1.Cells(5, 1).Value = i
                                                              VVVV Offset in voltage
  Sheet1.Cells(5, 2).Value = ((((b(UBound(b) - 23)) * 128 + b(UBound(b) - 21)) / 16) * (5 / 1024) - 2.92) * 100 ' Temperature 1
  Sheet1.Cells(5, 3).Value = ((((b(UBound(b) - 19)) * 128 + b(UBound(b) - 17)) / 16) * (5 / 1024) - 2.92) * 100 ' Temperature 2
  Sheet1.Cells(5, 4).Value = ((((b(UBound(b) - 15)) * 128 + b(UBound(b) - 13)) / 16) * (5 / 1024) / 4.8 - 0.16) / 0.0062 ' Humidity
1
  Sheet1.Cells(5, 5).Value = ((((b(UBound(b) - 11)) * 128 + b(UBound(b) - 9)) / 16) * (5 / 1024) / 4.8 - 0.16) / 0.0062 ' Humidity 2
  Sheet1.Cells(5, 6).Value = ((((b(UBound(b) - 7)) * 128 + b(UBound(b) - 5)) / 16) * (5 / 1024) / 4.8 - 0.16) / 0.0062 ' Humidity 3
  Sheet1.Cells(5, 7).Value = ((((b(UBound(b) - 3)) * 128 + b(UBound(b) - 1)) / 16) * (5 / 1024) / 4.8 - 0.16) / 0.0062 ' Humidity 4
                                                             ^^^ sensor supply
  exampleDate = Now
  Sheet1.Cells(5, 8).Value = Hour(exampleDate)
  Sheet1.Cells(5, 9).Value = Minute(exampleDate)
  Sheet1.Cells(5, 10).Value = Second(exampleDate)
  Sheet1.Cells(5, 11).Value = Day(exampleDate)
```

Sheet1.Cells(5, 12).Value = Month(exampleDate) Sheet1.Cells(5, 13).Value = Year(exampleDate)

' close COM port MSComm1.PortOpen = False

Next i End Sub

2. Настройте отображение данных как показано ниже.

	A	В	С	D	E	F	G	Н	I	J	K	L	M
1	Измерение	и запись	темпе	ратуры	и влажно	ocmu							
2													
3		Темпера	гура, С	Влажности	5, %			Время			Дата		
4		1	2	1	2	3	4	Час	Мин	Сек	День	Месяц	Год
5	7	12.5	12.7	87.4	88.3	86.2	82.1	8	11	42	3	9	2013
6													
7													

Задание 4. Запись данных в отдельный Excel файл.

- 1. Добавьте в программу задания 3 команды открытия внешнего Excel файла (см. таблицу Macros выше), записи данных во внешний файл и закрытия внешнего файла.
- 2. Настройте таблицу внешнего файла как показано ниже.

	A	В	С	D	E	F	G	Н	
1	<u>Наблю</u>								
2									
3	Start cell Дата, Время Температура, С Влажность, %							Время, сек	
4	12		1	2	1	2	3	4	
5	1	9/3/2013 8:11	12.4	12.8	87.4	88.3	86.2	82.1	28
6	2	9/3/2013 8:11	12.5	12.8	87.4	88.3	86.2	82.1	30
7	3	9/3/2013 8:11	12.4	12.8	87.4	88.3	86.2	82.1	33
8	4	9/3/2013 8:11	12.4	12.8	87.4	88.3	86.2	82.1	35
9	5	9/3/2013 8:11	12.5	12.7	87.4	88.3	86.2	82.1	37
10	6	9/3/2013 8:11	12.4	12.7	87.4	88.3	86.2	82.1	40
11	7	9/3/2013 8:11	12.5	12.7	87.4	88.3	86.2	82.1	42
12									
13									

Задание 5. Быстрая загрузка, остановка мониторинга и выгрузка рабочей программы.

1. Используя команды Macros, приведенные в таблице выше, разработайте показанный ниже интерфейс, в котором кнопка "Run" запускает циклический процесс чтения, отображения и накопления аналоговых данных задания 3 и 4, кнопка "Stop" останавливает циклический процесс, а кнопка "Close" закрывает Excel файл с Macros.

2. Обеспечьте автоматический запуск Macros при открытии Excel файла следующей командой Workbook.

🚈 Microsoft Visual Basic - Long_Read_H	um_and_Temp_2.xls							
[‡] Eile Edit <u>V</u> iew Insert F <u>o</u> rmat <u>D</u> ebug	<u>Run I</u> ools <u>A</u> dd-Ins <u>W</u> indow <u>H</u> elp							
🔣 📴 - 🗶 🕹 🖉 🔠 💌 👘	🕨 💷 🔟 💐 🚰 😴 📯 🛛 🎯 🛛 Ln 2, Col :	1						
Project - VBAProject 🗙								
Long Doad Hum and Temp 2 vie ThieWorkbook (Code)								
S VBAProject (Long_Read_Hum_and_1								
B Sheet1 (Sheet1)								
Bheet2 (Sheet2)	Private Sub Workbook_Open()							
Sheet3 (Sheet3)	UserForm1.Show							
(* ThisWorkbook)	End Sub							
E SerForm1								

3. Сравните собственный код с примером кода выполнения задания:

Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long) Dim StopMacro As Boolean

Private Sub CommandButton1_Click()

Dim b() As Byte ' for COM port Input buffer reading ' for saving data in external xls file: Dim oXL As Excel.Application, oBook As Excel.Workbook, oSheet As Excel.Worksheet, vValue As Variant Dim Offset As Integer ' or Long

StopMacro = False

For i = 1 To 10000

DoEvents 'statement in the loop to click the other button If StopMacro Then Exit For 'Sub

MSComm1.CommPort = 3 MSComm1.Settings = "9600,N,8,1" MSComm1.InputLen = 0 On Error Resume Next

```
MSComm1.PortOpen = True
```

1

```
If Err Then
   MsgBox "Com" & MSComm1.CommPort & ": not available. Change CommPort property to another port."
   Exit Sub
  End If
  ' using the Excel automation objects to open xls file
  Set oXL = New Excel.Application
  Set oBook = oXL.Workbooks.Open("D:\pc\LONG ADC Arduino Read\DataBase 1.xls")
  Set oSheet = oBook.Worksheets("Sheet1")
  Sleep 2000& 'Delay for 2 second
  'start Arduino sending of ADC 14 bit averages into COM port
  MSComm1.Output = Chr$(1) 'LED High
  Sleep 500& 'Delay for 0.5 second
  b = MSComm1.Input 'reading ADC data
  'ADC 10 bit average = (Hi byte x 128 + Lo byte) / 16
  'Arduino averages ~730 ADC samples each excel loop with 0.5 s delay
  Sheet1.Cells(5, 1).Value = i
                                                              VVVV Offset in voltage
  Sheet1.Cells(5, 2).Value = ((((b(UBound(b) - 23)) * 128 + b(UBound(b) - 21)) / 16) * (5 / 1024) - 2.92) * 100 ' Temperature 1
  Sheet1.Cells(5, 3).Value = ((((b(UBound(b) - 19)) * 128 + b(UBound(b) - 17)) / 16) * (5 / 1024) - 2.92) * 100 ' Temperature 2
  Sheet1.Cells(5, 4).Value = ((((b(UBound(b) - 15)) * 128 + b(UBound(b) - 13)) / 16) * (5 / 1024) / 4.8 - 0.16) / 0.0062 ' Humidity
  Sheet1.Cells(5, 5).Value = ((((b(UBound(b) - 11)) * 128 + b(UBound(b) - 9)) / 16) * (5 / 1024) / 4.8 - 0.16) / 0.0062 ' Humidity
2
  Sheet1.Cells(5, 6).Value = ((((b(UBound(b) - 7)) * 128 + b(UBound(b) - 5)) / 16) * (5 / 1024) / 4.8 - 0.16) / 0.0062 ' Humidity 3
  Sheet1.Cells(5, 7).Value = ((((b(UBound(b) - 3)) * 128 + b(UBound(b) - 1)) / 16) * (5 / 1024) / 4.8 - 0.16) / 0.0062 ' Humidity 4
                                                             ^^^ sensor supply
  exampleDate = Now
  Sheet1.Cells(5, 8).Value = Hour(exampleDate)
  Sheet1.Cells(5, 9).Value = Minute(exampleDate)
  Sheet1.Cells(5, 10).Value = Second(exampleDate)
  Sheet1.Cells(5, 11).Value = Day(exampleDate)
  Sheet1.Cells(5, 12).Value = Month(exampleDate)
  Sheet1.Cells(5, 13).Value = Year(exampleDate)
  Offset = oSheet.Cells(4, 1).Value
                                    'Index offset
  oSheet.Cells(Offset, 1).Value = Offset - 4
  oSheet.Cells(Offset, 2).Value = exampleDate
  oSheet.Cells(Offset, 3).Value = Sheet1.Cells(5, 2).Value
  oSheet.Cells(Offset, 4).Value = Sheet1.Cells(5, 3).Value
```

```
oSheet.Cells(Offset, 5).Value = Sheet1.Cells(5, 4).Value
oSheet.Cells(Offset, 6).Value = Sheet1.Cells(5, 5).Value
oSheet.Cells(Offset, 7).Value = Sheet1.Cells(5, 6).Value
oSheet.Cells(Offset, 8).Value = Sheet1.Cells(5, 7).Value
oSheet.Cells(Offset, 9).Value = Sheet1.Cells(5, 10).Value
```

Offset = Offset + 1

oSheet.Cells(4, 1).Value = Offset 'Cell offset

' close external xls file Set oSheet = Nothing oBook.Close True ' without False displays Message Set oBook = Nothing oXL.Quit Set oXL = Nothing

'ActiveWorkbook.Close True 'ActiveWorkbook.Close False

' close COM port MSComm1.PortOpen = False

Next i Exit Sub

Application.CommandBars(1).Reset 'reset the main Worksheet Menu bar

End Sub

Private Sub CommandButton2_Click() StopMacro = True End Sub

Private Sub CommandButton3_Click() End 'Comment: It Exit all macros '<Ctrl + Break> stops running macro

The following closes Excel Application: Application.DisplayAlerts = False ThisWorkbook.Save Application.DisplayAlerts = True Application.Quit End Sub 4. Проверьте работоспособность разработанной системы мониторинга которая считывает аналоговые сигналы, фильтрует их, обрабатывает, отображает и накапливает. Система имеет простой интерфейс который может автоматически запускать при открытии Excel файла, имеет возможность ручной остановки процесса мониторинга и выхода из системы.

Задание 6. Накопление данных в xls файле под управлением МатЛАБ.

1. Замените XLS модуль управления передачей, обработки и записи данных (см. Рис. 1, Задание 3) аналогичным модулем на базе т-файла МатЛАБ (см. Рис. 9) использующего для записи данных в xls файл технологию Microsoft ActiveX control.

Рис. 9. Блок-схема системы накопления аналоговых данных, их фильтрации, обработки и накопления на базе МатЛАБ, MS Excel и платформы Arduino.

Пример m-кода модуля МатЛАБ использующего технологию ActiveX control для записи обработанных данных канала RS-232 в MS Excel:

```
% Arduino initializing
s = serial('COM3', 'BaudRate',9600, 'DataBits',8, 'Parity', 'none',
'FlowControl', 'none');
set (s, 'Timeout', 0.1);
fopen (s);
% xls initializing
filename = 'DataBase_1.xls'; % existing file
filename = fullfile (pwd, filename);
hExcel = actxserver ('excel.application');
%set(hExcel, 'Visible', 1);
Workbook = hExcel.Workbooks;
%Read xls data
invoke(Workbook, 'Open', filename);
LineNum = hExcel.Activesheet.get ('Range', 'A4');
line_num = LineNum.value;
if isnan (line_num) % is A4 empty ?
    line num = 7;
end
pause(1);
for i = 1:10
    fprintf(s,'1');
    In = fread(s);
    if ~isempty (In)
        temp_1 = (((In(1) * 128 + In(2)) / 16) * (5 / 1024) - 2.87) * 100;
        temp_2 = (((In(3) * 128 + In(4)) / 16) * (5 / 1024) - 2.87) * 100;
        hum_1 = (((In(5)*128+In(6))/16) * (5 / 1024) / 4.8 - 0.16) / 0.0062;
        hum_2 = (((In(7)*128+In(8))/16) * (5 / 1024) / 4.8 - 0.16) / 0.0062;
        hum_3 = (((In(9)*128+In(10))/16)* (5 / 1024) / 4.8 - 0.16) / 0.0062;
        hum_4 = (((In(11)*128+In(12))/16)* (5 / 1024) / 4.8 - 0.16) / 0.0062;
        data = [temp_1 temp_2 hum_1 hum_2 hum_3 hum_4];
        range = ['A' num2str(line_num)];
        records = hExcel.Activesheet.get ('Range', range);
        records.value = line_num - 4;
        range = ['B' num2str(line_num)];
        date_time = hExcel.Activesheet.get ('Range', range);
        date_time_now = [datestr(now, 23) ' ' datestr(now, 13)];
        date_time.value = date_time_now;
        range = ['C' num2str(line_num) ':H' num2str(line_num)];
        ADC_data = hExcel.Activesheet.get ('Range', range);
        ADC_data.value = data;
        range = ['I' num2str(line_num)];
        time_sec = hExcel.Activesheet.get ('Range', range);
```

```
time_sec.value = date_time_now (length(date_time_now)-
1:length(date_time_now));
        line num = line num + 1;
        pause (1);
    end
    pause (0.1);
end
LineNum = hExcel.Activesheet.get ('Range', 'A4');
LineNum.value = line num;
% close Arduino
fclose(s);
delete(s);
% close xls
invoke(hExcel.ActiveWorkbook,'Save')
Workbook.Close;
invoke(hExcel, 'Ouit');
hExcel.delete;
```

 Проверьте работоспособность т-модуля сравнивая результат с xls-модулем (Задание 4 и 5) который читает данные платформы Arduino, обрабатывает их и записывает в другой xls файл.

контрольные вопросы

- 1. Как обеспечить управление объектом из Excel используя порты платформы Arduino?
- 2. Какое максимальное количество строковых записей можно сделать в Excel файле?
- 3. Какими средствами можно расширить объем записываемой информации в Excel файлы?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- **1.** Создание интерактивных объектов и сред на базе платформы Arduino. Часть 1 <u>http://www.vr-online.ru/blog/sozdanie-interaktivnyh-obektov-i-sred-na-baze-platformy-arduino-chast-1-7947</u>
- 2. Создание интерактивных объектов и сред на базе платформы Arduino. Часть 2 <u>http://www.vr-online.ru/blog/sozdanie-interaktivnyh-obektov-i-sred-na-baze-platformy-arduinochast-2-7969</u>
- 3. Управление из Excel через COM порт <u>http://www.vr-online.ru/blog/upravlenie-iz-excel-</u> <u>cherez-com-port-8475</u>
- 4. Dr. Bob Davidov. COM/DCOM клиент и сервер автоматизации Microsoft ActiveX control. <u>http://portalnp.ru/2013/10/1156</u>
- 5. Parameters of the exhaled breath. <u>http://www.sciencebits.com/exhalecondense</u>
- 6. Dr. Bob Davidov. Компьютерные технологии управления в технических системах <u>http://portalnp.ru/author/bobdavidov</u>.