Dr. Bob Davidov

Подключение периферии к среде разработки систем управления МатЛАБ

Цель работы: Рассмотрение вопросов подключения периферийных устройств к МатЛАБ через интерфейсы компьютера Raspberry Pi и контроллера Arduino UNO.

Задача работы: Построение канала связи МатЛАБ с внешними устройствами в реальном времени.

Приборы и принадлежности: Компьютер Raspberry Pi (версия B), контроллер Arduino UNO, МатЛАБ, Simulink, Маршрутизатор ASUS RT-N10P, преобразователи уровней 3.3/0B в - 12/+12B и 3.3/0B в 5/0B.

ВВЕДЕНИЕ

Многие устройства имеют цифровые порты ввода вывода и различные последовательные каналы связи, например, распространенный интерфейс I2C. С другой стороны МатЛАБ имеет средства для обмена данными через сетевые устройства или по каналу RS-232. Подключение периферийных устройств к МатЛАБ с целью идентификации, оптимизации, разработки алгоритма управления, отладки алгоритмов петлевых вычислений и т.д. позволяет обеспечить максимальную адекватность моделей управления и проектировать рабочие системы за минимальное время.

В рамках этой работы рассматриваются следующие вопросы (см. Рис. 1).

- Взаимодействие МатЛАБ с платформой Arduino UNO
- Взаимодействие МатЛАБ с компьютером Raspberry Pi
- Взаимодействие Raspberry Pi с контроллером Arduino UNO
- Взаимодействие МатЛАБ с периферийными устройствами через I2C интерфейсы Raspberry Pi и Arduino UNO.
- Работа с Raspberry Pi в режиме консоли с удаленного компьютера.

Рис. 1. Варианты подключения периферии к МатЛАБ.

ОБЩИЕ СВЕДЕНИЯ

Взаимодействие Arduino UNO с периферийными устройствами через I2C интерфейс

Рис. 2. Вариант подключения цифрового порта PCF8574A к Arduino через I2C последовательный канал. В режиме I2C обозначенные пары контактов SDA и SCL контроллера Arduino работают параллельно. Устройства можно подключать к любой паре не меняя программу.

Программа чтения состояния кнопки и передача кода состояния в СОМ порт каждые 0.5 секунды:

	// Wire.begin(port_address);	; // jc	oin i2c b	ous in S	Slave mod	е		
	Serial.begin(9600); // start (}	COM with	9600 b	aud ra	te			
	<pre>void loop() { Wire.requestFrom(56, 1); char c = Wire.read(); Serial.print(c); delay(500); }</pre>	// request // receive // send byt // delay	byte fro a byte a te into 0 half see	om dev as chai COM p cond	vice #56 (0 racter ort	x38)		
🖏 сом в	Port Toolkit 3.8							
<u>M</u> essage	<u>V</u> iew Options <u>D</u> evice <u>H</u> elp							
- 💽) » 🖪 🖓 🕮 🖻		5					17:03:00
#	Time Sent	ASCII		#	Time	Received	ASCII	
				000001	17:02:03.750	FF FF FF FF	яяяяяяяяяяяяя)
				000002	17:02:11.750	FE FE FE FF	FF юююяя	
				000003	17:02:14.265	FF FF FF FF	яяяяяяяяяяяяяя	I
				000004	17:02:22.265	FF FF FF FF	яяяяяяяюююяяяя	я
				000005	17:02:30.265	FF FF FF FF	яяяяяяя	
				000006	17:02:34.281	FF FF FF FF	яяяяяяяяяяяяя)
				000007	17:02:42.281			ю
				000008	17:02:50.281		юю	
				000009	17:02:01:236		гг юяяяя	
				00010	11.02.33.730	11 11 11 IF	אאאאסוסוסוסואאאא	
Nh N	h Hh Hh	📄 🕅 C	ear	0				<u>ញ</u> Clear
				port:	COM7 bau	d: 9600 bits:	8 parity: None	stop bits: 1

Рис. 3. Отображение символов поступаемых от Arduino через СОМ порт. Коды FF/FE (символы я/ю таблицы ASCII) отслеживают разомкнутое/замкнутое состояния кнопки.

👓 arduino_i2c_knob Arduino 1.0.3		🕺 сом7		
File Edit Sketch Tools Help				Send
	Serial Monitor 😰			
arduino_i2c_knob §	•			
#include <wire.h></wire.h>				
<pre>#define port_address 0x38 // (0x38 = 56)</pre>	1200			
Done uploading.				
Binary sketch size: 3,730 bytes (of a 32,256 byt	e maximum)			
			No line and in a	ocoo havd
3	Arduino Uno on COM7		INO line ending	9600 Daud

Рис. 4. Отображение данных СОМ порта можно наблюдать и в окне "Serial Monitor" Arduino который открывается нажатием мыши на выделенном значке.

Программа переключения светодиода каждые 0.5 секунды (file: arduino_i2c_LED):

```
#include "Wire.h"
#define port_address 0x38 // (0x38 = 56)
int led = 13; // give name to Arduino Pin 13 with LED:
void setup() {
 pinMode(13, OUTPUT);
 Wire.begin(port_address);
                              // initialize i2c
}
void loop() {
 Wire.beginTransmission(port address);
 Wire.write(0);
 Wire.endTransmission();
 digitalWrite(led, LOW);
 delay(500);
 Wire.beginTransmission(port address);
 Wire.write(2);
 Wire.endTransmission();
 digitalWrite(led, HIGH);
 delay(500);
}
```

Взаимодействие МатЛАБ с периферийными устройствами через I2C интерфейс контроллера Arduino UNO

Рис. 6. Модель Simulink и ее блоки.

Программа контроллера Arduino UNO для чтения и обработки кода (см. в программе инструкции case) модели Simulink в момент поступления кода, накопления и усреднения данных АЦП, передачи Simulink состояния I2C кнопки и усредненных значений АЦП каждые 100 мсек:

/*

Operates under Simulink Arduino_I2C_ADC.mdl control Reads ADC A0 and A1 Reads I2C 8-bit I/O port Writes bits into Arduino I/O port Writes bits into I2C 8bit I/O port RT clock is 0.1s created 10 January 2013 by Bob Davidov

This example code is in the public domain. */

#include "Wire.h"

#define port_address 0x38 // (0x38 = 56)

byte ctrl_num; // control num of 0 .. 255 from simulink unsigned long set_time = 0;

int i2c_in;

int out3 = 3; // control Pin #3 int out2 = 2; // control Pin #2 int led = 13; // control LED

int adc_A0; int adc_A1;

unsigned long adc_A0_sum = 0; unsigned long adc_A1_sum = 0; int loop_num = 0;

void setup() { // Open serial communications and wait for port to open: Serial.begin(57600); //300, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200 Serial.flush(); // clear input buffer

// Wire.begin(port_address); // initialize i2c in Slave mode
Wire.begin(); // initialize i2c in Master mode

pinMode(out3, OUTPUT); pinMode(out2, OUTPUT); pinMode(led, OUTPUT);

// digitalWrite(led, LOW); // turn the LED on (HIGH is the voltage level)

}

```
void loop() {
 // get any incoming bytes:
 if (Serial.available() > 0) {
  ctrl_num = Serial.read(); // 0 .. 255 from simulink
  switch (ctrl_num) {
  case 0:
   digitalWrite(out3, LOW);
   digitalWrite(out2, LOW);
   digitalWrite(led, LOW);
   break;
  case 1:
   digitalWrite(out2, HIGH);
   digitalWrite(out3, LOW);
   digitalWrite(led, LOW);
   break;
  case 2:
   digitalWrite(out3, HIGH);
   digitalWrite(out2, LOW);
   digitalWrite(led, HIGH);
   break;
  case 3:
   Wire.beginTransmission(port_address);
   Wire.write(0);
   Wire.endTransmission();
   break;
  case 4:
   Wire.beginTransmission(port_address);
   Wire.write(255);
   Wire.endTransmission();
   break;
  default:
   digitalWrite(led, LOW);
   break;
  }
 }
 adc_A0 = analogRead(0);
 adc_A1 = analogRead(1);
 adc_A0_sum = adc_A0_sum + adc_A0;
 adc_A1_sum = adc_A1_sum + adc_A1;
 loop_num = loop_num + 1; // ~ 0 .. 180 lopps per 0.1 ms
```

```
// send to COM port results
```

```
unsigned long time = millis();
 if (time > set_time) {
  set_time = set_time + 100;
  adc_A0 = (adc_A0_sum * 16) / loop_num;
  adc_A1 = (adc_A1_sum * 16) / loop_num;
  byte adc_A0_Hi = ((adc_A0 >> 6) & 0xFE);
  byte adc_A0_Lo = ((adc_A0 << 1) & 0xFE);
  byte adc_A1_Hi = ((adc_A1 >> 6) & 0xFE);
  byte adc_A1_Lo = ((adc_A1 << 1) & 0xFE);
  Serial.print("A"); // it is header
  Serial.write(adc_A0_Lo);
  Serial.write(adc_A0_Hi); // output byte: uint8
  Serial.write(adc_A1_Lo);
  Serial.write(adc_A1_Hi);
  Wire.requestFrom(56,2); // request byte from i2c device #56 (0x38)
  i2c_in = Wire.read(); // receive a byte as character
  Serial.write(i2c_in); // send i2c input byte
  adc_A0_sum = 0;
  adc A1 sum = 0;
  loop_num = 0;
 }
}
```

Взаимодействие МатЛАБ с компьютером Raspberry Pi через RS-232 интерфейс

Рис. 7. Разъем DE-9, часто используемый для передачи по протоколу RS-232

Номер контакта	Тип сигнала	Пояснения
2	RxD Receive Data	Прием данных
3	TxD Transmit Data	Передача данных
5	Signal ground	

Таблица. Сигналы СОМ порта.

Raspberry Pi имеет канал последовательной приемо-передачи данных конфигурируемый на базе порта GPIO. Для подключения к GPIO с 3.3 В логикой устройства с RS-232 интерфейсом и уровнями +/- 12 В необходимо согласовать уровни напряжения двух устройств, например, при помощи микросхемы MAX3232, как это показано на Рис. 8.

Рис. 8.Схема согласования уровней напряжения порта GPIO (0/3.3 В) и устройства с RS – 232 интерфейсом (-12/+12 В), подключаемого к разъёму DE-9.

Для соединения двух устройств через СОМ порты по каналу RS – 232 можно использовать нуль-модемный кабель (см. Рис. 9).

Рис. 9. Схема простейшего нуль-модемного кабеля.

Подключение Raspberry Pi к USB порту компьютера можно выполнить при помощи USB / RS232 преобразователя, например, как показано на Рис. 10.

Для работы с последовательным портом необходимо подключить соответствующие библиотеки и выполнить настройки представленные ниже

Установка python serial

sudo apt-get install python-serial

Проверка python serial: \$ python >>> import serial

>>> exit()

Для использования последовательного порта необходимо отключить параметр getty поставив # в начало строки T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100 файла /etc/inittab:

```
#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100
```

Для приема RXT данных без многочисленного повторного возврата данных в TXD канал следует удалить текст

```
console=ttyAMA0,115200 kgdboc=ttyAMA0,115200 из файла /boot/cmdline.txt и перезагрузить компьютер
```

Пример программы проверки передачи данных Raspberry Pi персональному компьютеру.

```
import serial
import time
delay = 0.5
comunicacion = serial.Serial(' /dev/ttyAMA0', 9600)
comunication.open()
```

while True: comunication.write('1') time.sleep(delay) comunication.write('0') time.sleep(delay) comunication.write('2') time.sleep(delay) comunication.write('3')

🖏 CON	A Port Too	lkit 3.8 - Ul	REGISTERED								
<u>M</u> essage	e <u>V</u> iew <u>O</u> p	itions <u>D</u> evice	<u>H</u> elp								
- 🗸	9	*	7.25		s.					2	2:58:27
#	Time	Sent	ASCII	#	Time	Received				ASCII	
				000001	22:57:17.578	31 32 33 3	1 32 33 3	1 32 33	31 32 33	12312312	231231231
				000002	22:57:25.578	32				2	
				000003	22:57:26.093	33 31 32 3	3 31 32 3	3 31 32	33 31 32	31231231	23123123
				000004	22:57:34.093	31 32 33 3	11			1231	
				000005	22:57:36.109	32 33 31 3	2 33 31 3	2 33 31	32 33 31	23123123	312312312
				000006	22:57:44.109	33 31 32 3	13			3123	
				000007	22:57:46.125	31 32 33 3	1 32 33 3	1 32 33	31 32 33	12312312	231231231
				000008	22:57:54.125	32 33 31				231	
				000009	22:57:55.640	32 33				23	
				000010	22:57:56.640	31 32 33 3	1 32 33 3	1 32 33	31 32	12312312	2312
<			>	<							
Mb	M M	M	<u> </u> Clear	0						Î	Clear
					port:	COM1 ba	ud: 9600	bits: 8	parity: None	stop	o bits: 1

Рис. 11. Проверка приема данных от Raspberry Pi по каналу RS-232.

Пример программы (на языке Python) приема передачи данных по каналу RS-232 (stud_7_8/rs_matlab.py):

import time import serial # Configure serial port s = serial.Serial() s.baudrate = 57600 s.bytesize = 8s.parity = 'N' s.stopbits = 1s.timeout = 0.5s.xonxoff = 0s.rtscts = 0s.port("/dev/ttyAMA0") s.open() s.flush() # clear buffering def readch(s): while True: ch = s.read() # read one byte if ch=='1' or ch=='2' or ch=='3' or ch=='4': return ch while True: rcv = readch(s)

```
if rcv == '1':
  s.write('A12345')
if rcv == '2':
  s.write('A23456')
if rcv == 3':
  s.write('A34567')
if rcv == '4':
  s.write('A45678')
if rcv == '5':
  s.write('A')
  i = 25
  s.write(chr(i)) # i = 0 .. 255
  s.write(chr(0x25))
  s.write(chr(255))
  s.write(chr(0xFF))
  s.write(chr(19))
```

time.sleep(0.1);

Рис. 12. Модель проверки приема-передачи данных МатЛАБ - Raspberry Pi по каналу RS-232.

Обеспечение временных интервалов в Raspberry Pi

С самого начала Linux не проектировалась как операционная система реального времени. Ее многопользовательские и многозадачные свойства не способствует решению задач реального времени.

Компьютер Raspberry Pi не имеет таймера для отсчета временных интервалов. Системную дату и время можно вычислять внешними аппаратными средствами - "часами", например, с I2C интерфейсом. Но их односекундное разрешение недостаточно для вычисления временных интервалов с миллисекундной точностью.

Использование собственного аппаратного ШИМ для формирования временных интервалов не годится поскольку ШИМ гарантирует работу с заданной скважностью, но не может обеспечить работу с заданным периодом.

Задержки типа time.sleep(delay) выполняются чисто программными средствами и имеют хорошую точность, но изменение задержки delay на заданную величину в процессе выполнения программы, например, для подстройки частоты - невозможно.

Интерпретатор Python не лучшее средство программирования приложений реального времени (например, в сравнении с С). Можно заметить, что даже небольшая программа построения временных интервалов в цикле делает это с заметными флуктуациями.

Для обеспечения совместной работы модели Simulink и интерфейса Raspberry в реальном времени можно выполнить следующую подстройку таймера модели по системному таймеру компьютера модели.

1. Включить в код Raspberry для циклической связи с МатЛАБ задержку, равную заданному периоду вычисления модели, например, 0.1 сек.

time.sleep(0.1)

- 2. Дополнить модель simulink следующими средствами для вычисления отклонения виртуального времени выполнения модели от соответствующего системного времени, с учетом задержки запуска модели (~10сек.).
 - Примечание. Такт вычисления simulink модели, поддерживаемый средствами RS232 интерфейса, равен времени цикла выполнения программы компьютера Raspberry Pi.

- 3. Запустить модель на выполнение и течении нескольких минут и после остановки модели найдите в workspace dt error отклонение времени модели.
- 4. Для уменьшения ошибки формирования такта модели установите новую задержку в программе Raspberry: 0.1s (1+dt error)
- 5. Проверьте точность временных интервалов вычисления модели (см. п. 3).

Взаимодействие Raspberry Pi с контроллером Arduino по каналу I2C

I²C использует две двунаправленные линии, подтянутые к напряжению питания - последовательная линия данных (SDA, англ. Serial DAta) и последовательная линия тактирования (SCL, англ. Serial CLock).

Классическая адресация включает 7-битное адресное пространство с 16 зарезервированными адресами. Это означает до 112 свободных адресов для подключения периферии на одну шину.

Основной режим работы — 100 кбит/с;

Процедуру обмена начинает ведущее устройство (Master) которое формирует стартовый бит переводом линии SDA из высокого состояния в низкое при высоком уровне линии SCL.

Рис. 13. Тактирование передачи данных по шине I2C [1]. S – стартовый бит (спад SDA при высоком SCL) ; B1, B2, ..., B_N – биты данных (бит начинает при низком SCL и удерживается при высоком SCL); P – стоповый бит (подъём SDA при высоком SCL).

После формирования стартового бита, ведущий переводит линию SCL в низкое состояние и выставляет на линию SDA старший бит первого байта сообщения. Количество байт в сообщении не ограничено. Изменение данных на линии SDA выполняется только при низком уровне сигнала на линии SCL. Данные не должны изменяться во время высокого состояния синхроимпульса SCL.

Процедура обмена завершается стоповым битом - переходом линии SDA из низкого состояния в высокое при высоком состоянии линии SCL.

После приема байта данных (восьми бит) ведомое устройство (Slave) выставляет на шину SDA 9-ый бит подтверждения приема байта.

Ведущий не имеет права на управление переходом линии SCL из низкого состояния в высокое но может удерживать линию SCL в низком состоянии до момента готовности к приему следующего бита. Таким образом скорость передачи любого ведущего адаптируется к скорости медленного устройства.

Рис. 14. Пример подключения Arduino - Raspberry Pi по каналу I2C через согласователь напряжения 3.3B/5B TXS0102D.

ПРИМЕРЫ ПОЛУЧЕНИЯ ПРОВЕРЕННЫХ РЕЗУЛЬТАТОВ И ВАРИАНТЫ ДЛЯ САМОКОНТРОЛЯ

Задание 1. Взаимодействие Arduino UNO с периферийными устройствами через I2C интерфейс.

Проверьте работоспособность связи контроллера Arduino UNO с кнопкой и светодиодом, подключенных к цифровому порту PCF8574A с I2C интерфейсом. Схема соединения (Puc.2) и программы Arduino приведены выше в разделе "Взаимодействие Arduino UNO с периферийными устройствами через I2C интерфейс".

Задание 2. Взаимодействие МатЛАБ с периферийными устройствами через I2C интерфейс контроллера Arduino UNO

Проверьте работоспособность связи среды Simulink с периферийными устройствами контроллера Arduino UNO, подключенных к I2C интерфейсу. Схема соединения (Рис.5),

модель Simulink и программа контроллера Arduino приведены выше в разделе "Взаимодействие МатЛАБ с периферийными устройствами через I2C интерфейс контроллера Arduino UNO".

Задание 3. Построение канала МатЛАБ – Raspberry Рі для работы в реальном времени.

1. Постройте в Simulink модуль, разделяющий амплитуду сигнала на два байта.

Рис. 15. Модель Simulink.

2. Проверьте работоспособность модуля

Рис. 16. Окно блока Scope модели Simulink.

3. Создайте программу на языке python для приёма трех байт из канала последовательной передачи данных, восстановления сигнала и передачи сигнала с дополнительными байтами обратно в канал. Принимаемая и передаваема последовательность байт начинается с заголовка 'A'. Принимаемая и передаваемая амплитуда сигнала состоит из двух байт.

Пример программы:

import serial import time

Configure serial port

```
s = serial.Serial()
s.baudrate = 38400 #9600, 14400, 19200, 38400, 57600, 115200
s.bytesize = 8
s.parity = N'
s.stopbits = 1
s.timeout = 0.5
s.xonxoff = 0
s.rtscts = 0
s.port("/dev/ttyAMA0")
s.open()
s.flush() # clear buffering
def readch(s):
 while True:
  ch = s.read() # read one byte
  if ch=='A':
    rcvlo = s.read()
    rcvhi = s.read()
    rcv = ord(rcvhi)*256 + ord(rcvlo)
    return rcv
while True:
 val = readch(s)
 s.write('A')
 lo = (val \& 0000ff)
 hi = (val & 00ff00) >> 8
 s.write(chr(lo))
 s.write(chr(hi))
 s.write('A')
 s.write(chr(0x41))
 s.write(chr(65))
 time.sleep(0.1);
```

s.close()

4. Наберите Simulink модель для связи с Raspberry Pi

Примечание. Поскольку такты времени формируются внешним устройством (Raspberry), то для работы Simulink модели с функциями временной области (например, интеграл, производная, и др.) необходимо сделать следующую установку параметров моделирования: Меню > Simulation > Configuration Parameters > Solver > Tasking and sample time options > Tasking mode for periodic sample time > Singletasking или Multitasking

end

Рис. 17. МатЛАБ модель для проверки связи с Raspberry Pi через RS-232 интерфейс. Частоты приёма-передачи данных МатЛАБ и Raspberry должны совпадать. Скорость передачи выбирается из ряда 300, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200 бод.

5. Проверьте качество связи МатЛАБ – Raspberry

Рис. 18. Зависимость амплитуды пилообразного или синусоидального сигнала от времени. МатЛАБ посылает 2-х байтный пилообразный сигнал (розовый график). Raspberry принимает байты, восстанавливает сигнал, делит восстановленный сигнал на на байты и посылает их МатЛАБ (желтый график) каждую 0.1 сек. МатЛАБ восстанавливает принятый сигнал и сравнивает его с переданным сигналом. Измеренная неточность формирования RT интервала для этой программы составляет 0.1/39 секунды. Задержка выполнения программы МатЛАБ после запуска составляет около 7 секунд.

Рис. 19. Формирование такта реального времени с подстройкой задержки (Delay).

6. Создайте программу на языке си для связи Raspberry с МатЛАБ по тому же алгоритму, что и программа на языке Python, представленная в этом задании выше. Точность квантования по времени (100 мсек.) должна обеспечиваться программными средствами без подстройки задержки, как показано на рисунке ниже.

Рис. 20. Формирование фиксированного такта реального времени без с подстройкой задержки.

Пример программы:

```
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <signal.h>
#include <fcntl.h> // used for UART
#include <termios.h> // used for UART
/*
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <stdint.h>
#include <semaphore.h>
#include <sys/mman.h>
*/
//static struct timespec timemark;
static int rs232;
static void close_rs232(int unused) // ^C calls close_rs232
{
         close(rs232);
         exit(0);
}
// Adds "delay" nanoseconds to timespecs and sleeps until that time
static void sleep_until(struct timespec *ts, int delay)
{
         ts->tv_nsec += delay;
         if(ts->tv_nsec >= 1000*1000*1000) {
                   ts->tv_nsec -= 1000*1000*1000;
                   ts->tv_sec++;
         }
         clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, ts, NULL);
```

```
// Demo program of RPi and Simulink connection with 100 ms clock
int main(int argc, char **argv)
// Setting up the UART
         int rs232 = -1;
         //Open UART
         rs232 = open("/dev/ttyAMA0", O_RDWR | O_NOCTTY | O_NDELAY);
         if (rs232 == -1) {
                   printf("Error - Unable open serial port\n");
         }
         //CONFIGURE THE UART
         //The flags (defined in termios.h - see http://pubs.opengroup.org/onlinepubs/007908799/xsh/termios.h.html):
         // Baud rate:- B1200, B2400, B4800, B9600, B19200, B38400, B57600, B115200, B230400, B460800, B500000,
B576000, B921600, B1000000, B1152000, B1500000, B2000000, B2500000, B3000000, B3500000, B4000000
         tcgetattr(rs232, &cfg);
                                  //get existing configuration setup
         fcntl(rs232, F_SETFL, 0); //fcntl(deviceFD, F_SETFL, FNDELAY);
         ////set both incoming and outgoing baud rates...
         cfsetispeed(&cfg, B38400);
         cfsetospeed(&cfg, B38400);
         cfg.c cflag |= (CLOCAL | CREAD);
         ////8N1 (8 data bits, No parity, 1 stop bit)
         cfg.c_cflag &= ~PARENB;
         cfq.c cflaq &= ~CSTOPB;
         cfg.c_cflag &= ~CSIZE;
         cfg.c_cflag |= CS8;
         cfg.c_cflag &= ~CRTSCTS; //~CNEW_RTSCTS; //disable hardware flow control
         //use RAW unbuffered data mode (eg, not canonical mode)
         cfg.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG | IGNBRK);
         cfg.c_iflag &= ~(IGNPAR | IXON | IXOFF | IXANY);
         cfg.c_oflag &= ~OPOST;
                                      //raw (unprocessed) output mode
         tcsetattr(rs232, TCSANOW, &cfg);
         struct timespec ts:
         unsigned int delay = 100*1000*1000; // =100 ms (delay in ns)
         unsigned int inbyte1, inbyte2, mlabin;
         unsigned char inbyte, outbytes[6];
         signal(SIGINT, close_rs232); // ^C calls close_rs232
         while(1)
         {
                   while (1)
                   ł
                            if(read(rs232,&inbyte,1)>0)
                                                         // read one byte
                            {
                                      if(inbyte=='A')
                                      {
                                               read(rs232,&inbyte,1); // read first byte
                                               inbyte1 = inbyte;
                                               read(rs232,&inbyte,1); // read second byte
                                               inbyte2 = inbyte;
```

}

```
mlabin = inbyte1 + inbyte2*255;
                                                  break;
                                       }
                             }
                   }
                    sleep until(&ts,delay);
                    clock_gettime(CLOCK_MONOTONIC, &ts);
                    outbytes[0] = 'A';
                    outbytes[1] = inbyte1;
                    outbytes[2] = inbyte2;
                    outbytes[3] = 10;
                    outbytes[4] = 65;
                    outbytes[5] = 20;
               write(rs232, outbytes, 6); // port, bytes to write, number of bytes to write
         }
}
```

Задание 4. Построение канала МатЛАБ – Arduino для работы в режиме осциллографа – отображения в Simulink входного напряжения АЦП.

1. Соберите представленную ниже блок схему Simulink для сборки и отображения сигналов принимаемых из СОМ порта.

🐱 Arduino_A	ADC_Scope/Subsys	tem *				
<u>File E</u> dit <u>V</u> iew	<u>S</u> imulation F <u>o</u> rmat	<u>T</u> ools <u>H</u> elp				
🗅 🚔 🖬	🕹 X 🖻 🖻 -	⇔⇒ � :	2 ≏ ▶	Inf	Normal	-
	Qy = Qu >> 1 →	double	`_} → [u(2)*128 +u	(1)	0ut
Ready	100%			FixedSt	epDiscrete	
Source Block Param	neters: Serial Receive	X	📓 Block Para	ameters: Seria	l Configuration	
Serial Receive			Serial Config	guration		

Serial Receive		CSerial Configuration			
Receive binary data ove	er serial port.	Configure the parameters for the serial port.			
Parameters		Parameters			
Communication port:	сом7 💌	Communication port:	COM7		
Header:	A	commanication porting			
		Baud rate:	57600		
lerminator:	<none></none>	Data bits:	8		
Data size:	[4 1]				
Data type:	uint8	Parity:	none		
C Enable blocking mor	te	Stop bits:	1		
		Byte order:	LittleEndian		
Action when data is un	available: Output last received value	-,			
Custom value:	0	Flow control:	none		
Block sample time:	0.1	Timeout:	10		
	<u>Cancel Help</u> Apply		Cancel Help Apply		

Select:	Simulation time					
Solver Data Import/Export	Start time: 0.0	Stop time: inf				
Diagnostics	Solver options		France			
Hardware Implementat Model Referencing	Type: Fixed-step	Solver: discrete (no continuous states)	*			
⊡-Simulation Target ⊡-Code Generation	Fixed-step size (fundamental sample time): 0.1					
- HDL Code Generation	Tasking and sample time options					
	Periodic sample time constraint:	Unconstrained	~			
	Tasking mode for periodic sample times:	Auto	~			
	Automatically handle rate transition for data transition Higher priority value indicates higher task prior	ansfer Ity				

Рис. 21. Параметры модели Simulink.

2. Загрузите в Arduino программу чтения чтения аналоговых сигналов (ADC 4 и ADC 5), разбиения кодов ADC на байты и передачи их с заголовком 'A' в COM порт каждые 100 мсек.

Пример программы:

```
int adc A4;
int adc_A5;
unsigned long set time;
void setup() {
 // Open serial communications and wait for port to open:
 Serial.begin(57600); //300, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200
 Serial.flush(); // clear input buffer
 set_time = millis();
}
void loop() {
 // send to COM port results
 unsigned long time = millis();
 if (time > set time) {
  adc_A4 = analogRead(4);
  adc A5 = analogRead(5);
  set time = set time + 100;
  byte adc_A4_Hi = ((adc_A4 >> 6) & 0xFE);
  byte adc A4 Lo = ((adc A4 << 1) & 0xFE);
  byte adc_A5_Hi = ((adc_A5 >> 6) & 0xFE);
  byte adc A5 Lo = ((adc A5 << 1) & 0xFE);
  Serial.print("A"); // it is header
  Serial.write(adc A4 Lo);
  Serial.write(adc_A4_Hi); // output byte: uint8
  Serial.write(adc A5 Lo);
  Serial.write(adc_A5_Hi);
 }
}
```

- 3. Запустите набранную Simulink модель.
- 4. Подключая 4 и 5 АЦП входы к питанию 3.3 В, 5В и "земле" убедитесь в работоспособности канала цифрового и аналогового отображения АЦП входов в Simulink.

Задание 5. Настройка канала обмена данными Удаленный компьютер – Raspberry Pi – I2C – Arduino UNO – COM - MatLAB.

1. Соберите следующую схему.

Рис. 22. Схема соединения Терминал – Raspberry Pi – I2C – Arduino – Simulink. Канал I2C RPi конфигурируется по дефолту на контактах GPIO2 (pin 3) и GPIO3 (pin5) после загрузки Raspberry Pi . В Arduino канал I2C конфигурируется на 4 и 5 входах АЦП.

2. Программой IP Scanner определите IP адрес Raspberry Pi

🧟 Advar	nced IP	Scanner						
<u>F</u> ile <u>A</u> cti	ions <u>S</u> el	ttings <u>V</u> iew	<u>H</u> elp					
So So	can 🚺			0				E Like us on Facebook
192,168.0	0.1 - 192	2.168.3.254						~
Results	Favorit	es						
Status	Na	me		IP		*	Manufacturer	MAC address
📿	rou	ter.asus.com		192.168	3.1.1			BC:EE:7B:81:48:60
· · · · · · · · · · · · · · · · · · ·	dl-0)1cb90d5018c		192.168	8.1.59		GIGA-BYTE TECHNOLOGY CO., LTD.	00:1D:7D:49:99:00
💆	BLA	CKBERRY-525	5	192.168	3.1.119		RIM	3C:74:37:D6:86:5A
····· 💻	dl-6	39d2b0623b2f		192.168	3.1.138		Wistron InfoComm Manufacturing(Kunshan)Co.,Ltd.	20:6A:8A:32:D8:85
· · · · · · · · · · · · · · · · · · ·	ras	pberrypi		(192.168	3.1.232		Raspberry Pi Foundation	B8:27:EB:E3:81:B1
81%, 4 aliv	/e, 1 dead	, 828 unknowr				П		

Рис. 23. Сканирование сетевых устройств.

Примечание. Программу Advanced IP Scanner можно использовать без инсталляции.

При необходимости сетевые параметры можно прописать в файле сетевых интерфейсов и конфигурационном файле Raspberry Pi следующим образом.

```
<u>Файл сетевых интерфейсов Raspberry Pi</u> открывается через консоль командой
```

sudo nano /etc/network/interfaces.

В файле вместо строки

iface eth0 inet dhcp

следует указать используемые сетевые параметры, например,

iface eth0 inet static address 10.222.0.182 netmask 255.255.252.0 gateway 10.222.3.254

<u>Конфигурационный файл</u> имеет путь /etc/resolv.conf. Файл resolv.conf обычно содержит IP адреса серверов имён (DNS) которые переводят имена в адрес для любого узла доступного в сети.

В файле resolv.conf вместо строки

nameserver 8.8.8.8

следует написать адреса DNS сервера, например, nameserver 83.243.64.2 nameserver 83.243.65.2 3. Программой putty.exe установите связь основного компьютера с Raspberry Pi через терминал.

🔀 PuTTY Configuration		×			
Category: 	Basic options for your PuTTY session Specify the destination you want to connect to Host Name (or IP address) Port 192.168.1.232 22 Connection type: Rlogin Image: SSH Image:				
About	<u>Open</u> <u>C</u> ancel				
192.168.1.232 - PuTTY login as: pi pi@192.168.1.232's password:					

Рис. 24. Запуск удаленного терминала Raspberry Pi с основного компьютера.

Примечание: Для работы в терминале с правами root (например, для того чтобы не набирать слово sudo для выполнения защищенных команд) необходимо ввести команду

sudo –i или sudo su

Для выхода из режима root необходимо ввести exit.

🗳 pi@raspberrypi: ~	×
pi@raspberrypi ~ \$(sudo -i)	^
root@raspberrypi:~# exit	
logout	
pi@raspberrypi ~ \$(sudo su)	
root@raspberrypi:/home/pi# exit	_
exit	
pi@raspberrypi 🦟 💲	~

- 4. Загрузите средства отображения АЦП входов в среде Simulink, как показано в предыдущем Задании 4.
- 5. Проверьте соединение Raspberry Pi Arduino через двунаправленный согласователь уровней 3.3В / 5В. Для этого
- 6. Загрузите через терминал интерпретатор Python

\$ sudo python

7. В среде интерпретатора импортируйте библиотеку для работы с интерфейсом GPIO

>>> import RPi.GPIO as GPIO

- 8. Снимите все конфигурации (включая конфигурацию I2C, устанавливаемую по дефолту) >>> GPIO.cleanup()
- 9. Установите способ нумерации выводов GPIO (BCM или BOARD номера физических контактов разъема)

>>> GPIO.setmode(GPIO.BOARD)

- 10. Сконфигурируйте 3-ий и 5-ый выводы для работы в режиме передачи (OUT) и приёма (IN)
 - >>> GPIO.setup(3, GPIO.OUT)
 - >>> GPIO.setup(5, GPIO.OUT)
- 11. Используя следующие команды подавайте на соответствующие выводы GPIO логические единицы и нули. Наблюдайте в Simulink за входами АЦП Arduino которые через преобразователь уровня подключены к 3-му и 5-му контактам GPIO. Убедитесь, что модель Simulink при помощи Arduino отображает состояние выводов GPIO компьютера Raspberry Pi.

```
>>> GPIO.output(3, 1)
```

>>> GPIO.output(3, 0)

>>> GPIO.output(5, 1)

>>> GPIO.output(5,0)

🖻 pi@raspberrypi: ~ 🚺 🗖	X
pi@raspberrypi ~ \$ sudo python	
Python 2.7.3 (default, Jan 13 2013, 11:20:46)	
[GCC 4.6.3] on linux2	
Type "help", "copyright", "credits" or "license" for more informati	on.
>>> import RPi.GPIO as GPIO	
>>> GPIO.cleanup()	
>>> GPIO.setmode(GPIO.BOARD)	
>>> GPIO.setup(3,GPIO.OUT)	
>>> GPIO.output(3,0)	
>>> GPIO.output(3,1)	
>>> GPIO.output(3,0)	
>>> GPIO.output(3,1)	
>>> GPIO.setup(5,GPIO.OUT)	
>>> GPIO.output(5,1)	
>>> GPIO.output(5,0)	
>>> GPIO.output(5,1)	
>>>	

Рис. 25. Настройка и управление выводами GPIO.

- 12. Верните все выводы GPIO в исходное состояние >>> GPIO.cleanup()
- 13. Завершите проверку соединения Raspberry Pi Arduino Simulink и выходом из интерпретатора Python.
 - >>> exit()
- 14. Перезагрузите компьютер RPi

\$ sudo reboot

- 15. Закройте и снова загрузите putty терминал Raspberry Pi.
- 16. Используя следующие команды ОС Linux в разделе /home/pi создайте рабочий каталог, например, st_7_8, и в нем программу передачи данных устройству 0x2A канала I2C.

\$ dir	/// вывод содержимого текущей папки
\$ pwd	/// вывод пути текущего каталога
\$ sudo mkdir st_7_8	/// создание каталога st_7_8
\$ dir	/// вывод содержимого текущей папки
\$ cd st_7_8	/// переход в папку st_7_8
\$ sudo nano tsk_4.py	/// вызов редактора nano для создания текстового файла
	tsk_4.py

Рис. 26. Окно редактора папо.

 X

/// Выход из редактора

\$ sudo modprobe i2c-dev

/// активация I2C интерфейса

\$ sudo chmod o+rw /dev/i2c-0

\$ i2cdetect -y 1

/// проверка наличия шины "1" канала I2С

🗳 pi@raspberrypi: /home	
pi@raspberrypi /home \$ i2cdetect -y 1	~
0123456789abcdef	
00:	
10:	
20:	
30:	
40:	
50:	
60:	
70:	
pi@raspberrypi /home \$	~

Рис. 27. Проверка состояния I2С интерфейса: I2С функционирует нормально.

\$ dmesg

/// проверка частоты I2C канала

- \$ sudo modprobe -r i2c_bcm2708 && sudo modprobe i2c_bcm2708 baudrate=100000 /// ///установка частоты 100 кГц (при необходимости),
- 17. Из пакета примеров оболочки Arduino загрузите в контроллер программу приема данных i2c канала (в режиме ведомого "Slave") и передачи их в COM порт: \arduino-1.0.3\libraries\Wire\examples\slave receiver\slave receiver.ino

Пример программы:

```
#include <Wire.h>
void setup()
{
 Wire.begin(42);
                           // join i2c bus with address #4
 Wire.onReceive(receiveEvent); // register event
 Serial.begin(9600);
                            // start serial for output
}
void loop()
 delay(100);
}
// function that executes whenever data is received from master
// this function is registered as an event, see setup()
void receiveEvent(int howMany)
ł
 while(1 < Wire.available()) // loop through all but the last
  char c = Wire.read(); // receive byte as a character
  Serial.print(c);
                       // print the character
 int x = Wire.read(); // receive byte as an integer
 Serial.println(x);
                        // print the integer
}
```

18. Откройте окно для наблюдением за данным СОМ порта

Рис. 28. Открытия окна отображения данных СОМ канала.

19. Запустите программу Python для передачи данных в i2c канал

\$ sudo python ./tsk_4.py /// запуск программы tsk_4.py под управлением интерпретатора Python

Рис. 29. Запуск и работа Python программы.

20. Наблюдайте в окне COM порта Arduino данные Arduino переданные через I2C интерфейс.

🕯 сом7	
	Send
20	^
0	
20	
0	
20	
0	
20	
	×
Autoscroll	No line ending 💉 9600 baud 💌

Рис. 30. Данные СОМ порта.

21. Запустите программу чтения – передачи I2C данных (порт 42) в СОМ порт со скоростью 57600 бод.

Пример программы:

```
#include <Wire.h>
void setup()
{
    Wire.begin(42); // join i2c bus with address #4
    Wire.onReceive(receiveEvent); // register event
    Serial.begin(57600); // start serial for output
}
```

```
void loop()
{
    delay(100);
}
// function that executes whenever data is received from master
// this function is registered as an event, see setup()
void receiveEvent(int howMany)
{
    char c = Wire.read(); // receive byte as a character
    Serial.print("A"); // it is header
    Serial.print(c); // print the character
}
```

22. Запустите модель Simulink для приема и отображения данных СОМ порта

🐱 Source Block Param	eters: Serial Receive 🛛 🔀	😽 Block Parameters: S	erial Configuration 🛛 🔀	
Serial Receive		-Serial Configuration-		
Receive binary data ove	er serial port.	Configure the parameters for the serial port.		
Parameters		Parameters		
Communication port:	COM7 💌	Communication port:	сом7	
Header:	Α	Baud rate:	57600	
Terminator:	<none></none>	Data bits:	8	
Data size:	[1 1]	Parity:	none	
Data type:	uint8			
🗹 Enable blocking mod	te	Stop bits:		
Action when data is un	available: Output last received value 🔽	Byte order:	LittleEndian	
Custom value:	0	Flow control:	none	
Block sample time:	0.1	Timeout:	10	
4 <u>0</u>	Cancel <u>H</u> elp Apply		Cancel Help Apply	

Рис. 31. Параметры Simulink модели.

- 23. Запустите циклическую передачу данных в I2C канал Raspberry Pi.
- 24. Наблюдая данные отображаемые Simulink моделью убедитесь в работоспособности канала Raspberry Pi I2C Arduino Simulink.
- 25. Работу Raspberry Pi завершите командой

 $\$ sudo shutdown –h now

Задание 6. Работа с файловой системой Raspberry Pi с удаленного компьютера.

1. Загрузите и распакуйте программу WinSSHD для удаленного доступа к файловой системе Raspberry.

<u>F</u> iles <u>M</u> ark <u>⊂</u> o	mmands <u>N</u> et S	5ho <u>w</u> (C <u>o</u> nfiguration	<u>S</u> tart	906					<u>H</u> elp
2 888 8		S	*_ 4 4				85	0+0 0+0	3	
📼 d 😽 [_none	e_] 16,058,00	8 k of 3	78,140,1 \	[🖃 d 🌱 [_none_]	16,058,008	B k of	78,14	10,1	۰
🕶 d:\Raspberry	Pi\Archive\wir	ոՏCP_ւ	unzip*.* * 🔹	•	✓ d:\RaspberryPi\A	rchive*.*			÷	* 🔻
Name		Ext	Size		Name		Ext	S	ize	
🏦 []			<dir></dir>		企[]			<	DIR>	
₩inSCP)	com	293,272		🧀 (home_pi)			<	DIR>	
(₩inSCP)		exe	10,640,216		[winSCP_unzip]			<	DIR>	
🗐 license		txt	37,123	-{	🕂 winscp551		zip	4,4	103,28	30
🗐 readme	ļ	txt	358		🛃 putty		exe		95,61	16
					🛃 ipscan23		exe	6,9	596,60)0
0 k / 10,713 k	in 0 / 4 file(s)			(0 k / 11,226 k in 0	/ 3 file(s),	0/2	dir(s)		
d:\Ra	aspberryPi\Arcl	hive>								*
F3 View	F4 Edit	F5 (Сору F6	6 Mo	ove F7 NewFolde	er F8 De	lete	AI	+F4 E	xit

Рис. 32. Распаковка WinSCP.

2. Запустите программу WinSSHD и введите IP адрес Raspberry Pi, его User Name и Password. Имя и пароль, изначально устанавливаемые с ОС Raspbian: рі и raspberry. Завершите ввод нажатием Login.

🏠 WinSCP Login	
New Site	Session File protocol: SFTP Host name: 192.168.1.232 User name: Password: pi Save As Advanced
<u>T</u> ools ▼ <u>M</u> anage ▼	Login Close Help

Рис. 33. Ввод параметров компьютера Raspberry Pi.

3. Скопируйте файл или каталог Raspberry Pi на основной компьютер.

🊋 pi - RPi - WinSCP							
Local Mark Files Comma	ands Session Options Remote He	p					
🖶 📰 📚 Synchronize	🗩 🦑 💽 🦚 🔛 🖓 Que	eue 👻 Transfer Settings Default	• 🔗 •				
📮 RPi 🚅 New Session							
🚭 D: Local Disk	• 🚰 😨 🐟 • 🔿 • 💽 💽	🖬 🏠 🤁 🐁	pi 🔹 👔	🗳 🔽 📥 - 🔶 - 🖬 🛣 🏠 🎜	🙀 Find Files	6	
Upload 👔 🔐 Edit	🗙 🛃 🕞 Properties 📑 🔂	+ - V	Download 🙀 🔐	Edit 🗙 🛃 🕞 Properties 📑 🕞 🚦	+ - V		
D:\RaspberryPi\Archive\home	e_pi		/home/pi				
Name – Ext	Size Type	Changed	Name - Ext	Size Changed	Rights	Owner	^
6	Parent directory	2/3/2014 9:41:47 AM	C C	1/22/2014 12:47:07 AM	rwxrwxrwx	pi	
ada	File Folder	2/3/2014 9:41:06 AM	Desktop	1/1/1970 4:02:03 AM	rwxr-xr-x	pi	
🚞 c	File Folder	2/3/2014 9:41:09 AM	Documents	9/26/2013 4:53:24 AM	rwxr-xr-x	pi	
🚞 motor	File Folder	2/3/2014 9:41:13 AM	indiecity	9/26/2013 5:25:14 AM	rwxr-xr-x	pi	
🚞 motor-c	File Folder	2/3/2014 9:41:18 AM	motor	1/20/2014 10:23:07 PM	rwxr-xr-x	root	
🚞 st_7_3	File Folder	2/3/2014 9:41:45 AM	motor-c	1/21/2014 12:01:59 AM	rwxr-xr-x	root	
ast_8_1	File Folder	2/3/2014 9:41:47 AM	python_games	1/1/1970 4:02:03 AM	rwxrwxr-x	pi	
			C Scratch	9/26/2013 4:53:21 AM	rwxr-xr-x	pi	_
			ast 7 3	1/20/2014 7:30:24 AM	rwxr-xr-x	root	
			ast 8 1	1/20/2014 9:43:46 AM	rwxr-xr-x	DÍ	
			bash_history	32,406 B 1/22/2014 2:35:00 AM	PW	pi	~
0 B of 0 B in 0 of 6			0 B of 62,444 B in 0 of 35				
					SFTP-3	0:05:	04

Рис. 34. Оболочка WinSSHD. В левая панель - файловая систем Windows (основной компьютер), правая панель – файловая система Linux (Raspberry Pi).

4. Не разрушая исходное содержимое файловых систем проверьте работу основных команд по работе с файлами (создать, скопировать, раскрыть, переименовать, удалить).

Примечание: Для выполнения ряда команд Linux необходимо иметь права пользователя root.

К Raspberry Pi можно одновременно удаленно обращаться через оболочку WinSSHD и терминальное окно putty, представленное в предыдущем задании.

📝 /home	e/pi/c/rs_4.c - RPi - Editor - WinSCP		
	₽ & E X 0 9 € # &	🟥 🖷 Encoding 🎲 🕜	
	struct timespec ts; unsigned int delay = 100*1 unsigned int inbyte1, inby unsigned char inbyte, outb	000*1000; // =100 ms (delay in ns) te2, mlabin; ytes[6];	<u>A</u>
11	signal(SIGINT, close_rs232 clock_gettime(CLOCK_MONOTO); // ^C calls close_rs232 NIC, &ts);	
	while(1) { 		
	{ if(read(rs	232,&inbyte,1)>0) // read one byte	
	{ if	(inbyte=='A')	
	1	read(rs232,&inbyte,1); // read first byte	
		<pre>inbyte1 = inbyte; read(rs232,&inbyte,1); // read second byte inbyte2 = inbyte;</pre>	
11	,	mlabin = inbyte1 + inbyte2*255; printf("MlabIn = %d\n",mlabin); break;	
<	1		>
Line: 103/1:	29 Column: 109	Encoding: 1251 (ANSI - Cyrilli	

Рис. 35. Окно редактирования файла Raspberry Pi.

5. Закройте WinSSHD.

Confirm	? 🛛
Terminate session	n 'pi@192.168.1.232' and close application?
🗌 Never ask me again	OK Cancel <u>H</u> elp

контрольные вопросы

- 1. Проведите сравнение компьютера Raspberry Pi с контроллером Arduino.
- 2. Почему необходим согласователь уровней напряжений при построении канала передачи данных между Raspberry Pi и Arduino?
- 3. Назовите преимущества канала последовательной передачи данных I2С.
- 4. Что необходимо учитывать при подключении устройств к Raspberry Pi через RS-232 интерфейс?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Википедия I2C http://ru.wikipedia.org/wiki/I²C
- 2. Dr. Bob Davidov. Компьютерные технологии управления в технических системах http://portalnp.ru/author/bobdavidov