System Identification Toolkit.

Технологии Идентификации

Идентификация объектов систем управления. System Identification Toolbox.

Цель работы: освоение правил автоматической идентификации объектов в среде МатЛАБ.

Задача работы: построение математической модели динамической системы по измеренным данным входа и выхода реальной системы.

Приборы и принадлежности: Персональный компьютер с интегрированной средой МатЛАБ и пакетом Simulink..

ОБЩИЕ СВЕДЕНИЯ

Идентификация систем как совокупность методов для построения математических моделей динамических систем по данным наблюдений находит широкое применение на практике. Эта область теории управления хорошо изучена и формализована.

Пакет МатЛАБ System Identification Toolbox ориентирован на решение задач идентификации. При помощи пакета по временным или частотным входным и выходным экспериментальным данным можно

- оперативно идентифицировать непрерывные и дискретные передаточные функции,
- описывать поведение динамических систем в пространстве состояний,
- определять подходящую структуру и порядок модели,
- выполнять оценку параметров модели,
- проверять достоверность модели (выполнять верификацию).

В пакете реализованы методы

- максимального правдоподобия,
- минимизации ошибки прогноза (PEM prediction-error minimization),
- системной идентификации подмножества и др.

Средствами пакета можно оценивать нелинейные динамические модели

- Хаммерстайна-Винера (Hammerstein-Weiner),
- ARX (AutoRegresive model with eXternal input (АвтоРегрессионная модель с внешним входом))
- с вейвлетной сетью,
- с древовидным разделением
- с нелинейной сигмоидальной сетью.

РАБОТА С ПАКЕТОМ SYSTEM IDENTIFICATION TOOLBOX

Построение модели начинается с формирования входных воздействий которые подаются на объект и измерения реакций (откликов) на входные воздействия. Затем входные и выходные сигналы и выбранная из списка пакета структура используются для оценки значений параметров модели в соответствии с принятым критерием качества. Критерий качества идентификации характеризует степень адекватности модели объекту в рамках согласованных допущений и ограничений. Очень часто используется среднеквадратичный критерий – отклонение отклика модели от отклика прототипа при одном и том же входном воздействии. Определение достоверности модели на этапе верификации также определяется сравнением откликов для независимых воздействий которые не использовались при идентификации.

Ввод экспериментальных данных

Рис. 1. Пример экспериментальных данных прототипа модели.

Загрузка пакета System Identification Toolbox выполняется через командную строку МатЛАБ командой >> ident

Рис. 2. Диалоговое окно пакета System Identification Toolbox.

Данные временной или частотной областей загружаются из рабочего пространства МатЛАБ. Данные поставляются либо массивами (амплитуд или частот) либо объектами класса IDDATA (Time Domain) или (Freq Domain).

Для загрузки входных и выходных данных необходимо выбрать тип данных (Time domain, Freq domain, Object), ввести имена и параметры данных.

Import data 🛛 🔛	🛃 Import Data			
Time domain data.	Data Format for Signals	Inp	ut Properties	
Freq. domain data	Time-Domain Signals 🛛 👻	InterSample:	zoh	~
Example	K	Period:	inf	
	Workspace Variable	Ch	annel Names	
		Input:	valve	
	Output: depth	Output:	depth	
Data Views				
Time plot	Data Information	Physical	Units of Variabl	es
🗌 Data spectra	Data name: mydata	Input:		
Frequency function	Starting time	Output:		
	Sampling interval: 0.1]		
	Less	Notes		
	-			^

Рис. 3. Импорт экспериментальных данных.

Командой

>> advice(mydata)

можно получить информацию о качестве данных.

Можно увидеть временные, спектральные и частотные графики данных если установить соответствующие флажки поля Data View.

Рис. 4. Форматы отображения экспериментальных данных.

Можно импортировать до 8 блоков данных. Ненужные импортированные данные можно удалить перенеся их в корзину trash.

Предварительная обработка экспериментальных данных

При необходимости можно выполнить предварительную обработку данных (фильтрацию в выбранном диапазоне, удаление смещения, изменения диапазона данных, и др.) командами раздела Preprocess (Puc. 5).

Рис. 5. Список режимов предварительной обработки экспериментальных данных.

Перед предварительной обработки данные раздела import data необходимо переместить в зону Working Data.

Результаты предварительной обработки (Рис. 6) попадают в окна раздела import data автоматически или после нажатия на клавишу Insert.

Рис. 6. Варианты предварительной обработки экспериментальных данных.

Нахождение подходящей структуры модели и ее порядка

Алгоритмы раздела Estimate позволяют найти связь между оригинальными или обработанными выходными и входными данными (области Working Data).

Рис. 7. Выбор структуры модели для идентификации.

Пакет System Identification Toolbox работает со следующими структурами моделей (см. Рис. 7):

- $\frac{B(s)}{A(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \ldots + b_m}{a_0 s^n + a_1 s^{n-1} + \ldots + a_n}$ (непрерывная) • Transfer Functions $\frac{B(z)}{A(z)} = \frac{b_m z^m + b_{m-1} z^{m-1} + \ldots + b_0}{a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0}$ (дискретная) xnew = Ax + Bu + Ke;• State Space y = Cx + Du + e $\frac{K(1+Tzs)}{(1+Tp1s)}, \frac{K\exp(-Tds)}{(1+Tp1s)}, \frac{K}{s(1+Tp1s)}$ • Process Models Av = Bu + e; Av = Bu + Ce; v = [B/F]u + e; • Polynomial and State Space Models $y = [B/F]u + [C/D]e; \quad xnew = Ax + Bu + Ke;$ y = Cx + Du + eInputs (u) Nonlinear Block Predicted Regressors Outputs (V) Outputs (ŷ) u1(t-1), u2(t-3), y1(t-1), • Nonlinear ARX Models Input Nonlinearity Linear Block Output Nonlinearity • Nonlinear Hammerstein-Wiener Models:
- Spectral Models: SPA(Blackman-Tukey); SPAFDR(Freq.dep.res.); ETFE (Smoothed Fourier Trf)

	Time span (seconds):	[-0.5 4]
Correlation Models:	Order of whitening filter:	10

Параметры получаемой модели (порядок модели, количество полюсов и нулей, наличие задержки, и др.) задаются в соответствующих диалоговых окнах при выборе режима Estimation (см. Рис. 7). Можно запросить модели, например, с разным числом полюсов и нулей, и выбрать из них модель с наибольшей достоверностью (см. раздел "Проверка достоверности модели" ниже).

Параметры полученной модели можно запросить после идентификации дважды щелкнув на блоке зоны import models (Рис. 2), например, вот так выглядит окно описания передаточной функции модели:

🛃 Data/model Info: t	if1 📃 🗖 🔀					
Model name:	tf1					
Color:	[0,0,1]					
From input "valve" to output "depth": 0.356 s + 0.01874 						
C.	Diary and Notes					
Present	Close Help					

Рис. 8. Пример результата идентификации: модели непрерывной системы в виде передаточной функции.

Команда Present окна модели (Рис. 8) распечатывает описание модели в окне команд МатЛАБ: tf1 =

Estimated using TFEST on time domain data "mydata". Fit to estimation data: 23.28% (simulation focus) FPE: 0.1984, MSE: 0.191 More information in model's "Report" property.

Модели, найденные в разделе Estimate, можно сравнить по их реакции, расположению нулей и полюсов и др. параметрам. Для этого в секции Model Views необходимо установить соответствующие флажки.

Model output	🗹 Transient resp	🗹 Nonlinear ARX
Model resids	Frequency resp	🗹 Hamm-Wiener
	Zeros and poles	
	☑ Noise spectrum	

Запуск поиска моделей и построение сравнительных графиков можно получить и по команде Estimate > Quick Start.

Рис. 9. Варианты (Model Views) отображения характеристик моделей.

При помощи LTI Viewer (просмотровщика) окна System Identification Tool можно увидеть характеристики линейной модели:

- реакции на ступенчатое и импульсное воздействия,
- амплитудно-фазовые частотные характеристики,
- распределение полюсов и нулей,
- и др.

To LTI Viewer

Данные просмотровщику передаются из зоны import models через окно

Проверка достоверности модели

System Identification Toolbox помогает проверить достоверность полученных моделей путем сравнения отклика модели и реальной системы на одно и то же экспериментальное воздействие. Также можно построить график рассогласования между откликами, рассчитать ошибку, изменить границы доверительного интервала, и т.д.

Для определения достоверности необходимо перенести независимый набор данных из зоны import data в зону Validation data, выполнить Estimation, и простроить вьюером график отклика модели (Model Views). На окне графика отклика модели будет присутствовать и отклик прототипа.

Рис. 11. Схема и результат валидации (Validation).

Отображение других сравнительных характеристик можно выполнить как показано на Рис. 9.

Отображение модели средствами МатЛАБ и Simulink

Данные зон import data и model data можно в виде объекта передать через окно рабочую зону МатЛАБ. Команда > get() раскрывает структуру объекта. Входные и выходные сигналы объекта зоны import data выделяются командами

> ampIn = get(mydatae, 'InputData'),

> ampOut = get(mydatae, 'OutputData'), где mydatae – имя объекта, переданного в Workspace. Временной интервал данных

> Ts = get(mydatae, 'Ts');

Параметры объекта зоны model data, например, передаточной функции tfl (числитель и знаменатель) можно получить командами

> num = get(tfl,'num'); > den = get(tfl,'den'); Модель результата идентификации можно включить в окно модели Simulink через блок idmodel раздела Simulink Library Browser > Libraries > System Identification Toolbox, например

Рис. 12. Модель управления с моделью (idmodel) реальной системы.

Параметры модели вводятся в блок idmodel следующими форматами: idpoly, idss, idarx, idgrey, idproc, idft. Например, непрерывная передаточная функция $\frac{B(s)}{A(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \ldots + b_m}{a_0 s^n + a_1 s^{n-1} + \ldots + a_n}$ задается как idtf(коэф. числителя, коэф. знаменателя), а дискретная передаточная функция: idtf(коэф. числителя, коэф. знаменателя).

Сравнить реакцию полученной модели с экспериментальными значениями в Simulink можно, например, средствами следующей модели

Рис. 13. Схема сравнения откликов прототипа и его модели.

в которой формат экспериментальных данных зоны import data окна идентификации преобразован для ввода в модель следующим кодом.

```
ampIn = get(mydatae, 'InputData');
ampOut = get(mydatae, 'OutputData');
Ts = get(mydatae, 'Ts');
time = ((0:length(ampIn)-1)*0.1)';
ampInModel = [time, ampIn];
ampOutModel = [time, ampOut];
```

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Для выполнения этапов идентификации при помощи пакета System Identification Toolbox необходимо создать в Simulink виртуальный объект который будет рассматриваться как реальный объект идентификации с неизвестными параметрами.

Задание 1. Построение виртуального объекта.

1. Постройте в Simulink виртуальную систему протекания жидкости (см. Рис. 14)через два резервуара (Tank 1 и Tank 2). Входом системы является сечение крана (Valve_pos) –

координата u(t), а выходом – уровень нижнего резервуара, y(t). Выходной поток из резервуара пропорционален корню квадратному от уровня жидкости в резервуаре.

Рис. 14. Прототип системы для идентификации.

Рис. 15. Виртуальная модель прототипа (Рис. 14).

2. Загрузите в рабочую зону данные выхода у и входа и модели МатЛАБ

> load twotankdata

3. Подключите загруженные данные к модели (Рис. 15). Временной интервал данных: 0.2 сек.

```
time = ((0:length(u)-1)*0.2)';
t = time;
yout = y;
u_tst = [time, u];
y tst = [time, y];
```


Рис. 16. Настройка конфигурации модели: Подключение портов In1 и Out1 для выполнения (при необходимости) поиска параметров модели с откликом y(t) на входное воздействие u(t).

4. Запустите модель и сравните отклик модели с y(t).

Рис. 17. Вход модели, u(t) – верхний график. Отклик модели (желтый график) и y(t) – нижние графики.

Задание 2. Предварительная обработка данных и идентификация структуры модели и ее параметров.

Используйте воздействие и отклик виртуального прототипа полученные в предыдущем задании как экспериментальные данные реальной системы для ее идентификации.

- 1. Через командную строку загрузите System Identification Toolbox (Рис. 2)
 - > load ident
- 2. Введите сигналы и и у (см. Рис. 3) Укажите начальное время 0 и интервал 0.2.

🛿 System Identifi	cation Tool - Un	titled			🛃 Import Data 🔄 🗖 🔀
File Options Window I	Help > Operations		timodels		Data Format for Signals Time-Domain Signals
Freq. domain data Data object Example	< Preprocess ♥				Workspace Variable Input: u Output: y
Data Views	Estimate>	Model output	Model Views	Nonlinear ARX	Data Information Data name: mydata Starting time 0 Sampling interval 0
Data spectra	Trash Enter input and o	Model resids	Frequency resp Zeros and pole Noise spectrum S.	p Hamm-Wiener s	Import Reset Close Help

A System Identification	Tool - Untitled			
<u>File O</u> ptions <u>W</u> indow <u>H</u> elp				
Import data 🖌 🗸	Operations	Import n	nodels 🔽	
mydata	< Preprocess			
	→ mydata Working Data			
	Estimate>			
Data Views		N	fodel Views	
🔲 Time plot	Workspace LTI Viewer	Model output	Transient resp	Nonlinear ARX
🔲 Data spectra		Model resids	Frequency resp	Hamm-Wiener
Frequency function			Zeros and poles	
Data se	Trash مرازری t mydata inserted. Double clic	mydata /alidation Data k on icon (right mouse)	Noise spectrum) for text information.	

Рис. 18. Окно ввода экспериментальных данных (и и у).

- 3. Убедитесь, что введены правильные данные постройте графики данных (см. Рис. 4).
- 4. При необходимости выполните предварительную обработку данных (см. Рис. 5 и Рис. 6).
- 5. Выберите структуру модели идентификации, например, ARMAX (Рис. 7, Рис. 19) и введите ее параметры [na nb nc nk].

🛃 Polynomial a	and State Space Models 👘 🔲 🗖 🔀					
Structure:	ARMAX: [na nb nc nk]					
Orders:	[2 2 2 1]					
Equation:	Ay = Bu + Ce					
Method:	Prediction error method					
Domain:	O Continuous O Discrete (0.2 seconds)					
Add noise int	egration ("ARIMAX" model)					
Input delay:	0					
Name:	amx2221					
Focus:	Initial state:					
Dist.model: Es	stimate Covariance:					
	Estimate					
Display progress Stop iterations						
Iteration Opt	ions Order Editor					
Estimate	Close Help					

Рис. 19. Окно ввода параметров модели ARMAX. Число полюсов, число нолей плюс 1; число коэффициентов и задержка системы: na = 2, nb = 2, nc = 2, nk = 1; [2 2 2 1].

Рис. 20. Полиномиальное представление ARMAX модели

Структура ARMAX модели:

$$y(t) + a_1 y(t-1) + \dots + a_{n_a} y(t-n_a) = b_1 u(t-n_k) + \dots + b_{n_b} u(t-n_k - n_b + 1) + c_1 e(t-1) + \dots + c_n e(t-n_c) + e(t)$$

В компактной форме:

$$A(q)y(t) = B(q)u(t - n_k) + C(q)e(t),$$

где y(t) - выход в момент времени t; n_a - число полюсов; n_b - число нолей плюс 1; n_c - число C коэффициентов; n_k - число тактов прохода входного сигнала на выход (задержка системы); $y(t-1)...y(t-n_a)$ - предыдущие выходы от которых зависит текущий выход; $u(t-n_k)...u(t-n_k-n_b+1)$ - предыдущие входы от которых зависит текущий выход; $e(t-1)+...+c_{n_c}e(t-n_c)$ - значение белого шума.

Параметры n_a , n_b и n_c - порядки ARMAX модели, n_k - задержка, q – оператор задержки.

$$A(q) = 1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}$$
$$B(q) = b_1 + b_2 q^{-1} + \dots + b_{n_b} q^{-n_b+1}$$
$$C(q) = 1 + c_1 q^{-1} + \dots + a_{n_c} q^{-n_c}$$

- 6. Нажатием на клавишу Estimate запустите процесс идентификации параметров выбранной структуры модели по экспериментальным значениям реакции и воздействия прототипа системы.
- 7. Выведите значения параметров модели результаты идентификации в окне команд и Workspace.

🛃 Data/model Info: amx2221	
Model name:	amx2221
Color:	[0,0,1]
Discrete-time ARMAX model A(z) = 1 - 1.968 z^-1 + B(z) = 0.0004239 z^-1 -	: A(z)y(t) = B(z)u(t) + C(z)e(t)
C(z) = 1 - 1.611 z^-1 +	0.6698 z^-2
	Diary and Notes
<pre>% Import mydata Opt = armaxOptions; amx2221 = armax(mydata,[</pre>	2 2 2 1]. Opt)
Present	Close Help

Рис. 21. Получение информации двойным щелчком по соответствующему полю зоны Import models.

Вывод в окне команд:

amx2221 = Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)A(z) = 1 - 1.968 (+/- 0.003824) z^-1 + 0.9687 (+/- 0.003765) z^-2 B(z) = 0.0004239 (+/- 6.504e-05) z^-1 - 0.0003886 (+/- 6.639e-05) z^ -2 $C(z) = 1 - 1.611 (+-0.0136) z^{-1} + 0.6698 (+-0.01346) z^{-2}$ Name: amx2221 Sample time: 0.2 seconds Parameterization: Polynomial orders: na=2 nb=2 nc=2 nk=1 Number of free coefficients: 6 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties. Status: Termination condition: Near (local) minimum, (norm(g) < tol). Number of iterations: 8, Number of function evaluations: 20 Estimated using POLYEST on time domain data "mydata".

Fit to estimated using POLYEST on time domain data injusta Fit to estimation data: 96.65% (prediction focus) FPE: 3.867e-05, MSE: 3.844e-05 More information in model's "Report" property.

💕 Variable Edito	or (amx2221)			+i 🗆 ₹ ×	Workspace	
👪 👗 🖻 🛍 🗎	👹 🔏 - 慉 Stack: Base 💌 📉	plot(amx2221.a)	•	× * 🗖 🗗 🗆 🖽		🐻 Stack: 🦳 bode
😰 amx2221 <1×1 id	lpoly>				Name	Value
Property 🔺	Value	Min	Max		amx2221	<1×1 idpoly>
a	[1,-1.9679,0.9687]	-1.9679	1	~	ans	[]
- b	[0,4.2392e-04,-3.8859e-04]	-3.88	4.239		goto_ws	0
H c	[1,-1.6110,0.6698]	-1.6110	1		t	<3000×1 double>
H d	1	1	1		time	<3000×1 double>
F F	1	1	1		u u	<3000×1 double>
Nariable	'z^-1'				🛨 u_tst	<3000x2 double>
ioDelay	0	0	0	14.7	У	<3000x1 double>
🔽 IntegrateNoise	0				y_tst	<3000x2 double>
Structure	<1×1 pmodel.polynomial>				yout yout	<3000×1 double>
H NoiseVariance	3.8519e-05	3.851	3.851			
😰 Report	<1×1 idresults.polyest>					
금 InputDelay		0	0			
🕂 OutputDelay	Ö	0	0	~		

Рис. 22. Раскрытие атх2221 структуры рабочей области.

8. Отобразите графики структуры Workspace amx2221.

Рис. 23. График атх2221 структуры рабочей области.

9. Постройте характеристики модели (Рис. 9, Рис. 10).

Рис. 24. Отклик модели и прототипа.

10. Для увеличения сходимости откликов модели и ее прототипа повторите пункты 4 .. 10 с другими структурами и параметрами моделей.

Задание 3. Верификация модели.

Для проверки адекватности модели прототипу необходимо выполнить процедуру верификации. Она заключается в подаче на вход объекта и модели данных, которые не использовались для идентификации, и сравнении откликов.

- 1. Введите независимые данные сигналы которые не использовались при идентификации (см. Рис. 3).
- 2. Перенесите поле данных из зоны Import data в поле Validation Data.
- 3. Выделите модель в зоне Import models и постройте сравнительные характеристики модели (см. Рис. 9): реакции на единичное ступенчатое воздействие; частотную характеристику; распределение полюсов и нулей и др.

Задание 4. Построение модели прототипа в Simulink.

Пусть полученная ARMAX модель наилучшим образом отображает поведение прототипа – реальной системы. Эту модель можно интегрировать в Simulink через блоки Simulink Library Browser > Libraries > System Identification Toolbox как показано на Рис. 12.

1. Постройте модель прототипа и сравните переходные процессы модели и прототипа.

Рис. 25. Модель идентификации прототипа ARMAX [2221]. $A(z) = 1 - 1.967925 z^{-1} + 0.968692 z^{-2}$; $B(z) = 0.00042392 z^{-1} - 0.00038859 z^{-2}$; $C(z) = 1 - 1.6110 z^{-1} + 0.6698 z^{-2}$.

Задание 5. Проверка эффективности идентификации в среде МАТLAB R2015а.

- 1. Для проверки эффективности идентификации нахождения передаточной функции по известной реакции и входному воздействию будем использовать заранее вычисленные реакцию и воздействие известной структуры. Для этого
- 1.1. Постройте следующую модель в виде передаточной функции второго порядка в среде Simulink.

1.2. Подайте следующее воздействие на вход модели и вычислите реакцию на входное воздействие. Сохраните воздействие и реакцию в Workspace.

	Punction Block Parameters: Rate Transition1
	RateTransition
Source Block Parameters: Repeating Sequence Stair	Handle transfer of data between ports operating at different rates. Configuration options allow you to trade off transfer delay and code efficiency for safety and determinism of data transfer. The default configuration assures safe and deterministic data transfer. The block's behavior depends on option settings and/or the sample times of its input and output ports. Updating the block diagram causes text on the block's icon to indicate its behavior as follows: ZOH: Zero Order Hold 1/z: Unit Delay Buf: Copy input to output under semaphore control Db_buf: Copy input to output, using double buffers Copy: Unprotected copy from input to output NoOp: No Operation Mixed: Expanded to multiple blocks with different behaviors
Repeating Sequence Stair (mask) (link)	Danaa shara
Discrete time sequence is output, then repeated	Parameters
Discrete unite sequence is output, then repeated.	Ensure data integrity during data transfer
Main Signal Attributes	F Ensure deterministic data transfer (maximum delay)
Vector of output values:	Initial conditions:
[3111 42 2210 -124122].	0
Sample time:	Output port sample time options: Specify
0.05	Output port sample time:
	1e-3
QK Cancel Help Apply	OK Cancel Help Apply
Scope	Scope' parameters
🚍 🙆 🕀 👳 🖏 🔝 🎇 🖾 🖾 💭 🐣 🐂 🚽	Barriel History During
	General Tistory Style
5	Limit data points to last: 5000
	Save data to workspace
	Variable name: ScopeData
	Format: Array
-5 1 15 2	
0.0 1 1.0 2	OK Cassal Hab Asstr
Time offset: 0	CALCEI Help Apply

Вычисленную реакцию и входное воздействие будем использовать для сравнения заданной (в п.1) передаточной функции с передаточной функцией, вычисляемой по реакции и входному воздействию далее методом идентификации.

- 2. Используя полученные (в п.1) воздействие и реакцию найдите методом идентификации передаточную функцию "черного ящика". Для этого
- 2.1. Загрузите инструмент идентификации через окно Command Window.
 - > systemIdentification

2.2. Импортируйте вход и выход "неизвестной модели": Import data > Time domain data. Введите начальное время (Starting time) и период приращения времени (Sample time).

				承 Import Data	
				Data Form	nat for Signals gnals
承 System Identification - Un	titled		_ _ X	Worksp	ace Variable
Elle Options Window Help	Operations	Import models		Input: Output:	ScopeData(:,2) ScopeData(:,3)
Example	Working Data			Data Ir Data name: Starting time:	Iformation mydata
Data Views	To To Unrkspace LTI Viewer	Model Views Model output Model output Frequency or	sp Nonlinear ARX	Sample time:	1e-3 More
Frequency function	Trash Enter input and	Validation Data	um	Close	Reset Help

2.3. Проверьте введенные входные данные, для этого установите флажок 🔽 Ттеры

2.4. Выполните идентификацию (Estimate > Transfer function Models).

📣 Tra	nsfer Functi	ons					
Model	name: tf2 🥜	•					
Num	ber of poles:	2					
Num	ber of zeros:	1					
۲	Continuous-tin	ne 🔿 Discret	e-time (Ts	; = 0.001)	Feedthrough	1	
► 1/0) Delay						
▶ Est	timation Opt	ions					
		Estimate	d	lose	Help		
🥠 Plant 1	Identification Pro	ogress					
Transfe Estimat	er Function Id tion data: Tim	lentification Ne domain data m	ydata				
Data ha Number	as 1 outputs, of poles: 2.	1 inputs and 20 Number of zeros	01 sample: : 1	3.			
Initial	lization Metho	d: "iv"					
-Estimation	n Progress	arameters					
Initial	lizing using "	iv" method					
done.							
Initial	lization compl	lete.					
Nonline	ear least squa	ares with automa	tically c	hosen line	search method		
		Norm of	Firs	t-order	Improvement (%)		
Iterati	ion Cost	step	optimal	ity Expe	cted Achieved	Bisections	
0	1.12876e-28	-	3.17e+16	6.55e+29	-	-	
2	6.35457e-29	1.16e-13	1.4e+18	7.34e+29	34.3	0	
3	6.35126e-29	7.44e-15	1.41e+18	9.86e+29	0.052	3 11	
5	6.35126e-29	1.82e-18	1.41e+18	9.86e+29	2.53e-06	15	
6	6.35126e-29	9.1e-19	1.41e+18	9.86e+29	1.29e-09	16	
7	6.35126e-29	1.14e-19	1.41e+18	9.86e+29	1.6e-10	19	
8	6.35126e-29	2.84e-20	1.41e+18	9.86e+29	4.01e-11	21	
10	6.33538e-29	1.96e-14	7.5e+17	9.86e+29	0.25	5	
11	6.26846e-29	7.56e-15	8.31e+17	9.78e+29	1.06	3	
12	6.26846e-29	8.45e-19	8.31e+17	9.83e+29	1.74e-05	16	
13	6.26846e-29	2.11e-19	8.31e+17	9.83e+29	4.35e-06	18	
14	6.26846e-29	1.06e-19	8.31e+17	9.83e+29	2.17e-06	19	
15	0.∠0846e-29 6 26846e-29	3.208-20 2.64e-20	0.310+17 8 31e+17	9.83e+29 9.83e+29	1.090-06 5 43e-07	∠∪ 21	
17	6.00293e-29	1.38e-14	5.33e+17	9.83e+29	4.24	5	
18	5.99721e-29	1.81e-15	5.56e+17	1.04e+30	0.0952	5	
19	5.99479e-29	9.03e-16	5.67e+17	1.04e+30	0.0405	6	
20	5.99448e-29	1.13e-16	5.68e+17	1.04e+30	0.00503	9	
Estimat done.	ting parameter	r covariance					•
Result							
Termina Number	ation condition of iterations	on: Near (local) s: 20, Number of	minimum, function	(norm(g) < evaluation	tol). s: 329		
Status: Fit to	: Estimated us estimation da	sing TFEST with ata: 100%, FPE:	Focus = " 6.03043e-	simulation" 29			
			(1		
			Stop	Close			

2.5. Переместите параметры найденной передаточной функции в Workspace.

2.6. Раскройте структуру передаточной функции, содержащей параметры числителя (num) и знаменателя (den).

✓ Variables - tf2 ScopeData × t × t t1 × € tx1 dtf		🕆 🗙 Workspace 💿
		Name ∠. ScopeData
🕂 num	[3.1541e-07 100.0000]	tour
🕂 den	[1 5.0000 100.0000]	
abc Variable	's'	
🕂 ioDelay	0	
Structure	Ix1 tf	
H NoiseVariance	6.0125e-32	
Report	Ix1 tfest	
🕂 InputDelay	0	
	0	
Ts	0	
abo TimeUnit	'seconds'	
InputName	1x1 cell	
InputUnit	1x1 cell	
E InputGroup	Ix1 struct	
OutputName	Ix1 cell	
OutputUnit	Ix1 cell	
E OutputGroup	1x1 struct	
abc Name	'tf2'	
() Notes	Ix1 cell	
🕂 UserData	[]	
E SamplingGrid	1x1 struct	

3. Введите полученную передаточную функцию (п. 2.6.) с параметрами числителя (num) и знаменателя (den) в Simulink. Сравните реакции исходной передаточной функции (п.1.) и передаточной функции, полученной методом идентификации (п. 2.6.).

4. Сделайте вывод по результатам сравнения.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Назовите цели и задачи идентификации.
- 2. Дайте оценку технологии компьютерной идентификации в среде МатЛАБ.
- 3. Сравните идентификацию с оптимизацией в МатЛАБ.
- 4. Каким образом задается структура модели идентификации?
- 5. Как определяется погрешность идентификации?
- 6. Что такое верификация и чем она отличается от тестирования?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Help MatLAB
- 2. Dr. Bob Davidov. Компьютерные технологии управления в технических системах http://portalnp.ru/author/bobdavidov