Dr. Bob Davidov

Управление LPT портом в среде МатЛАБ

Цель работы: освоение правил подключения внешних устройств через LPT порт.

Задача работы: построение канала ввода/вывода TTL сигналов через LPT порт.

Приборы и принадлежности: Персональный компьютер с LPT портом, интерфейсный модуль FLKM-D25 SUB/S-2281144, кабель, МатЛАБ.

ОБЩИЕ СВЕДЕНИЯ

LPT порт можно использовать как интерфейс связи с внешними устройствами. К нему можно подключить, например, 12 светодиодов с номинальным током потребления до 10 мА, термодатчики DS1620, DS18S20, DS1821, память EEPROM I2C 24CXX и 24LC32A, твердотельное реле для управления сильноточной нагрузкой, транзисторный мост х4 с униполярным шаговым двигателем и др. устройства.

При помощи LPT порта можно также принимать сигналы, но с ограниченной периодичностью опроса и скоростью реакции – до 1 мс. Кроме того, операционная система может изредка приостанавливать опрос на несколько миллисекунд.

LPT порт имеет следующие электрические характеристики, полученные опытным путем (<u>http://mavius.narod.ru/projects/lpt/</u>):

•	Напряжение логической «1» на холостом ходу,	Uxx(1) = 3.35 4.88 B
•	Напряжение логического нуля на холостом ходу,	Uxx(0) = 0.065 B
•	Внутреннее сопротивление при лог. «1»,	r(1) = 4045 Ом
•	Внутреннее сопротивление при лог. «0»,	r(0) = 65 Om,

Для расчетов напряжение логической «1» при подключенной нагрузке следует принять равным 3.3 ... 3.4 В.

Рис. 1. Конфигурация параллельного порта. Светодиоды, например, АЛ307 с номинальным током потребления 10 мА.

Рис. 2. Интерфейсный модуль FLKM-D25 SUB/S – 2281144 для удобного подключения периферии к LPT порту.

Рис. 3. Кабель длиной 0.5 м с разъемами (female и male) на 25 контактов CABLE-D25SUB/B/S/ 50/KONFEK/S – 2302120 для связи интерфейса с LPT портом.

Рис. 4. Пример подключения внешнего устройства - дисплея Nokia 3310 LCD к компьютеру через LPT порт. <u>http://www.scienceprog.com/connect-nokia-3310-lcd-to-lpt-port/</u>. Питание дисплея 3.3B, выходное напряжение LPT порта 4.5 -5B. Диоды схемы подключения используются для согласования питающего напряжения по формуле: 4.5B - 0.7B - 0.7B = 3.1V.

Полезные функции МатЛАБ для работы с LPT портом:

	Создание цифрового объекта для		
<pre>dio = digitalio('parallel','LPT1');</pre>	- параллельного порта		
dio = digitalio('nidaq','Dev1');	- устройства 'Dev1' компании NI		
dio = digitalio('mcc','1');	- устройства '1' Measurement Computing		
get(dio,'PortAddress')	Получение адреса - параметра объекта		
	параллельного порта		
out = daqfind	Показывает открытые объекты		
	устройств, каналов или линий сбора		
	данных		
ParPort=daqfind;	Находит и удаляет открытые объекты		
for i=1:length(ParPort),	передачи данных		
stop(ParPort(i));			
delete(ParPort(i));			
end			
	Настройка 4-х линий порта на		
addline(ParPort, 0:3, 1, 'in', {'CLK', 'CS', 'nu', 'td'});	считывание данных		
bits = ~(getvalue(ParPort));			
CLK = bits(1,1);	Считывание входных линий порта		
CS = bits(1,2);			
line1=addline(paraport,0:3,'out');	Настройка порта запись данных		
pval=[0 0 0 1];			
putvalue(paraport, pval);	Запись данных в параллельный порт		

НАСТРОЙКА ВІОЅ

BIOS опция "Parallel Port Mode" устанавливает следующие режим работы параллельного порта:

- Normal простейший однонаправленный
- SPP стандартный (Standard Parallel Port)
- Ві-Dir или BPP двунаправленный (Bi-Directional)
- EPP усовершенствованный параллельный порт (Enhanced Parallel Port)

• ECP - самый высокоскоростной порт с расширенными возможностями (Enhanced Capabilities Port)

В большинстве случаев оптимальным выбором является Enhanced Capabilities Port, что обеспечит максимальную скорость обмена данными между компьютером и периферийным устройством. Если подключенное оборудование работает нестабильно, можно попытаться последовательно снизить используемый режим вплоть до стандартного. Очень часто в этом случае помогает установка двунаправленного (Bi-Directional) или комбинированного (Enhanced Parallel Port и Enhanced Capabilities Port) режимов.

Для управления устройствами, LPT порт предварительно должен быть переведен в режим EPP.

```
%check for previous opened ports
ParPort=daqfind;
for i=1:length(ParPort),
   stop(ParPort(i));
   delete(ParPort(i));
end
```

```
%create new port
warning('off', 'daq:digitalio:adaptorobsolete'); % warning is not
displayed
ParPort = digitalio('parallel','LPT1');
```

```
Переменная ParPort:
                                               🖺 Inspector: digitalio
    ▲ 탄ː 탄:
    BiDirectionalBit
                                  5.0
                                                        Ø
    Line
    Name
                                  parallelLPT1-DIO
                                                        Ø
    PortAddress
                                  0x378
    Running
                                  Off
    Taq
                                  null
                                                        Ø
    TimerPeriod
                                  0.1
                                                        Ø
                                  Digital IO
    Type
    UserData
                              [0x0_double_array]
                                                        Ø
```

get(ParPort, 'PortAddress')
daqhwinfo('parallel');

```
addline(ParPort, 0:7, 'out')
```

>>Index:	LineName:	HwLine:	Port:	Direction:
1	'Pin2'	0	0	'Out'
2	'Pin3'	1	0	'Out'
3	'Pin4'	2	0	'Out'
4	'Pin5'	3	0	'Out'
5	'Pin6'	4	0	'Out'
6	'Pin7'	5	0	'Out'
7	'Pin8'	б	0	'Out'
8	'Pin9'	7	0	'Out'

```
dataout = logical([0 0 0 0 0 0 0 0]);
putvalue(ParPort,dataout);
```

```
%check for previous opened ports
ParPort=daqfind;
for i=1:length(ParPort),
   stop(ParPort(i));
   delete(ParPort(i));
```

```
end
```

```
%create new port
warning('off', 'daq:digitalio:adaptorobsolete'); % warning is not
displayed
ParPort = digitalio('parallel','LPT1');
addline(ParPort, 0:3, 1, 'in',
{'CLK','CS','notused','test_data'});
```

```
bits = ~(getvalue(ParPort));
CLK = bits(1,1)
CS = bits(1,2)
```

```
delete(ParPort);
```

```
% End of parallel_port_read
```

```
Примечание.
```

Komanдa warning отключает вывод на экран следующего сообщения (реакции на выполнение кomanды digitalio): >> ParPort = digitalio('parallel','LPT1'); Замечание МатЛАБ (начиная с версии 2008b): Warning: This Parallel adaptor ('parallel') will not be provided in future releases of Data Acquisition Toolbox. Instead, it will be available as a separate download. See Solution 1-5LI9OA for details.

>> warning('off', 'daq:digitalio:adaptorobsolete'); %-отключает замечание МатЛАБ

ПРИМЕРЫ ПОЛУЧЕНИЯ ПРОВЕРЕННЫХ РЕЗУЛЬТАТОВ И ВАРИАНТЫ ДЛЯ САМОКОНТРОЛЯ

Задание 1. Прием информации о состояние внешней среды.

1. Используя информацию раздела "ОБЩИЕ СВЕДЕНИЯ" разработайте схему подключения внешнего механического ключа к LPT порту.

Примечание: Не забудьте включить в схему резистор (см. R1 на рисунке ниже) который защищает порт от короткого замыкания при записи в него логической "1". Значение резистора должно вычисляться как отношение максимального выходного напряжения порта (5В), к максимальному току (10 мА).

- 2. Разработайте программу МатЛАБ для считывания и отображения состояния ключа
- 3. Проверьте работоспособность канала ввода данных состояния ключа.

Задание 2. Управление внешним устройством.

1. Разработайте схему подключения светодиода к LPT порту.

Примечание: Пример выполнения задания можно найти ниже.

- 2. Разработайте в МатЛАБ программу управления светодиодом.
- 3. Проверьте работоспособность канала вывода данных.

Задание 3. Канал приема / передачи данных на базе LPT порта.

1. Разработайте схему подключения датчика температуры (например, DS1620, DS18S20, DS1821) и твердотельного реле к LPT порту.

Рис. 5. Пример подключения датчика температуры DS1821 (Диапазон: -55°C to +125°, 8-бит, разрешение:1° C, точность: \pm 1°C в диапазоне 0 .. +85°C) <u>http://datasheets.maximintegrated.com/en/ds/DS1821.pdf</u>

Спецификация твердотельного реле PF240D25:

12 280 VAC	
=10А, до 25 А (при охлаждении сильным потоком	
10 мс (АС цикл), 1/2 DC цикла	
3 15 VDC	
3 VDC	
1 VDC	
300 Ом	
нии 15 мA DC	

2. Разработайте программу управления мощностью нагревателя (подключенного к твердотельному реле) в соответствии с заданной температурой нагревателя.

Рис. 6. Структурная схема системы термостатирования.

3. Проверьте работоспособность построенной системы термостатирования.

Пример выполнения задания 2.

1. Подключаем интерфейсный модуль к LPT порту.

ПК с LPT портом

Рис. 7. Порядок подключения интерфейсного модуля к LPT порту.

 Используя электрическую схему (Рис. 6) подключаем светодиоды к контактам 1, 2, ...,
 9 интерфейсного модуля. Номера контактов интерфейсного модуля совпадают с номерами контактов LPT порта.

Рис. 8. Электрическая схема подключения светодиодов к LPT поту.

3. Разрабатываем в МатЛАБ программу циклического включения светодиодов.

```
Код программы:
```

```
% parallel_port_write.m v1.0A
% Matlab v7.0 (R14) SP 1
% 24 Jan 2012
2
clear all
%check for previous opened ports
ParPort=dagfind;
for i=1:length(ParPort),
    stop(ParPort(i));
    delete(ParPort(i));
end
%create new port
warning('off', 'dag:digitalio:adaptorobsolete'); % warning
is not displayed
ParPort = digitalio('parallel','LPT1');
get(ParPort, 'PortAddress')
daqhwinfo('parallel');
addline(ParPort, 0:7, 'out')
%>>Index: LineName: HwLine: Port: Direction:
%1 'Pin2' 0 0 'Out'
%2 'Pin3' 1 0 'Out'
%3 'Pin4' 2 0 'Out'
%4 'Pin5' 3 0 'Out'
%5 'Pin6' 4 0 'Out'
%6 'Pin7' 5 0 'Out'
%7 'Pin8' 6 0 'Out'
%8 'Pin9' 7 0 'Out'
for i=1:1:30
    dataout = logical([0 0 0 0 0 0 0 1]);
    putvalue(ParPort,dataout);
    pause(0.1)
    dataout = logical([0 0 0 0 0 0 1 0]);
    putvalue(ParPort,dataout);
    pause(0.1)
    dataout = logical([0 0 0 0 0 1 0 0]);
    putvalue(ParPort,dataout);
    pause(0.1)
    dataout = logical([0 0 0 0 1 0 0 0]);
    putvalue(ParPort,dataout);
    pause(0.1)
    dataout = logical([0 0 0 1 0 0 0]);
    putvalue(ParPort,dataout);
    pause(0.1)
    dataout = logical([0 0 1 0 0 0 0]);
```

```
putvalue(ParPort,dataout);
pause(0.1)
dataout = logical([0 1 0 0 0 0 0]);
putvalue(ParPort,dataout);
pause(0.1)
dataout = logical([1 0 0 0 0 0 0]);
putvalue(ParPort,dataout);
pause(0.1)
end;
dataout = logical([0 0 0 0 0 0 0]);
putvalue(ParPort,dataout);
```

% End of parallel_port_write.m

4. Результаты работы представлены на рисунке ниже.

Рис. 9. Циклическое включение светодиодов - результат работы выполненного примера управления LPT портом.

контрольные вопросы

- 1. Какие характеристики имеет LPT порт компьютера?
- 2. Какие устройства можно подключать к LPT порту?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. НЕЦР МатЛАБ
- 2. Phoenix contact. Interface module FLKM-D25 SUB/S 2281144. https://www.phoenixcontact.com/us/produkte/2281144
- 3. А.Р. Гайнуллин. Отчет по ЛР N8.1
- 4. Dr. Bob Davidov. Компьютерные технологии управления в технических системах <u>http://portalnp.ru/author/bobdavidov</u>.