DR. BOB DAVIDOV

Система термостатирования на базе интерфейса LabView

Цель работы: Освоить приемы построения системы управления в среде LabView.

Задача работы: Построить действующую систему термостатирования с контуром релейного управления и каналом наблюдения за влажностью на базе интерфейса Lcard E14-440 и среды проектирования виртуальных приборов LabView.

Приборы и принадлежности: LabView, USB устройство ввода/вывода E14-440, Датчик температуры; Твердотельное реле 10А/240V; Нагревательный элемент от 60 до 2000 Вт. Персональный компьютер.

ОБЩИЕ СВЕДЕНИЯ

Перечень тем:

- Структурная схема системы термостатирования
- Внешние компоненты системы термостатирования
- Структура модулей библиотеки lview.llb модуля E14-440 для взаимодействия с портами в асинхронном режиме и управления режимами отображения данных на виртуальном осциллографе.

СТРУКТУРНАЯ СХЕМА СИСТЕМЫ ТЕРМОСТАТИРОВАНИЯ

Взаимодействие среды разработки LabView с USB модулем ввода –вывода через S-функцию поясняется на примере реальной системы термостатирования включающей виртуальные (программные) модули, аппаратные средства и физические компоненты системы. Структурная схема примера системы термостатирования показана на Рис. 1. Ее виртуальный прибор (модель LabView) включает задатчик температуры, фильтр, компаратор. Физические компоненты – это USB модуль ввода вывода E14-440, твердотельное реле PF240D25, лампа накаливания, датчик температуры LM 335 и датчик влажности Honeywell HIH4010. Связь компьютерной модели с внешними физическими устройствами выполнена через виртуальные приборы *.vi библиотеки lview.llb модуля E14-440.

Рис. 1. Структурная схема системы термостатирования

Рис. 2. Физические компоненты системы термостатирования.

ВНЕШНИЕ КОМПОНЕНТЫ СИСТЕМЫ ТЕРМОСТАТИРОВАНИЯ

Модуль E14-440 (Рис 3) является универсальным программно-аппаратным устройством для использования со стандартной последовательной шиной USB и предназначен для построения многоканальных измерительных систем ввода, вывода и обработки аналоговой и цифровой информации в составе персональных IBM-совместимых компьютеров. Модуль *E14-440* внесен в **Государственный реестр средств измерений**.

Рис. З.Внешний вид модуля Е14-440.

Рис. 4. Внешние разъемы модуля Е14-440 (аналоговый – слева, цифровой - справа).

Сигнал	Общая точка	Направление	Назначение
IN<116>	Digital GND	Вход	16 <u>ти</u> битный цифровой вход: IN1 – младший бит (0 <u>ой</u> бит), IN16 – старший бит (15 <u>ый</u> бит).
OUT<116>	Digital GND	Выход	16 <u>ти</u> битный цифровой выход: ОUT1 – младший бит (0 <u>ой</u> бит), OUT16 – старший бит (15 <u>ый</u> бит).
Digital GND			Цифровая земля.
+5 B	Digital GND	Выход	Выход нестабилизированного напряжения +5 В для питания внешних цепей (берётся прямо с USB кабе-ля). Не более 40 мА.
+3.3 B	Digital GND	Выход	Выход стабилизированного напряжения +3.3 В для питания внешних цепей. Не более 10 мА.
INT	Digital GND	Вход	 Вход внешней цифровой синхронизации сигнала; Совместим с выходным лог. уровнем TTL/CMOS элементов с напряжением питания +5 В.

Табл. 0-1. Цифровой разъём DRB-37F модуля E14-440

Датчик температуры LM35:

Напряжение питания:	4 30 B	
Рабочий диапазон:	-55 + 150 °C	
Точность:	0.5 °С (при 25°С)	
Нелинейность:	+/- 0.25°C	
Коэффициент преобразования:	+ 10 мВ/°С	
Саморазогрев на воздухе:	$0.08^{\circ}\mathrm{C}$	
Выходное сопротивление:	0.1 Ом при токе нагрузки 1 мА	

Рис. 5. Спецификация датчика температуры LM35.

Датчик относительной влажности HIH 4010: 5 В (не более 5.8В) Напряжение питания: 0..100 % Рабочий диапазон: Точность: +/-3.5 % 15 сек Время отклика (в медленно движущемся воздухе): Коэффициент преобразования: Vout=Vsupply (0.0062 (sensor RH)+0.16) Ток потребления: 0.5 мА Диапазон рабочих температур: -40..+80 C 2,03_ 9,47 [0.373] 1,90 [0.075] 12,19 MIN 0.480]) . 3X 0,38 [0.015] 2,54 . 5,08 [0.200]

Рис. 6. Спецификация датчика относительной влажности НІН 4010.

Твердотельное реле PF240D25

Рис. 7. Спецификация твердотельного реле PF240D25.

СТРУКТУРА МОДУЛЕЙ БИБЛИОТЕКИ LVIEW.LLB МОДУЛЯ E14-440 ДЛЯ ВЗАИМОДЕЙСТВИЯ С ПОРТАМИ В АСИНХРОННОМ РЕЖИМЕ И УПРАВЛЕНИЯ РЕЖИМАМИ ОТОБРАЖЕНИЯ ДАННЫХ НА ВИРТУАЛЬНОМ ОСЦИЛЛОГРАФЕ.

Для работы в среде LabView с модулем E14-440 фирмой Л-Кард разработана библиотека виртуальных приборов (файл lview.llb) и примеры, входящие в состав библиотеки. Примеры позволяют оценить все основные возможности модуля.

- Асинхронное чтение данных АЦП,
- Синхронное чтение данных АЦП,
- Работу с дискретными входами/выходами.

Библиотека виртуальных приборов "lview.llb" использует промежуточную DLL библиотеку "lview.dll", написанную на языке Borland C 5/04. Исходные тексты этой DLL входят в комплект поставки модуля, поэтому при желании, пользователь может легко изменять или добавлять новые виртуальные приборы по образцу и подобию.

Для работы в среде LabView достаточно установить драйвер LCOMP и можно сразу загружать примеры, которые также находятся в файле "lview.llb".

Виртуальные приборы (ВП) общего назначения

LV_OpenModule.vi

Данный прибор устанавливает связь с первым найденным модулем. Его следует вызывать один раз перед использованием остальных виртуальных приборов

- Error при успешной инициализации возвращает единицу, при
- ошибке, например, если модуль не найден, возвращает ноль;
- ModuleId идентификатор модуля. Для модуля E14-440 равен 2;
- ModuleName строка содержащая имя модуля и его ревизию.

LV_CloseModule.vi

Данный прибор следует вызывать после завершения работы для освобождения интерфейса связи с модулем.

LV_CreateChannel.vi

Создает номер канала АЦП, в который входит как номер канала, так и диапазон.

• Diff mode – режим подключения (0 – дифференциальное; 1 - 32-канальный режим с общей землей).

• Gain – идентификатор диапазона измерения (см описание на плату). По умолчанию выбран максимальный диапазон измерения;

- Channel число от 0 до 31 (0 соответствует первому каналу АЦП);
- Logical channel параметр, который может быть использован в

Виртуальные приборы реализующие асинхронные функции ввода - вывода

Внимание: Асинхронные функции выполняются относительно медленно, поэтому не следует вызывать их чаще 100-200 раз в секунду. В том случае, если необходимо вводить данные с аналоговых входов модуля с четко установленной частотой дискретизации, следует пользоваться приборами, реализующими синхронный ввод данных.

LV_DoSingleAdcSample.vi

Выполняет асинхронный ввод данных с указанного канала АЦП.

Use calibr - значение TRUE включает использование встроенных калибровочных коэффициентов (при этом существенно возрастает точность измерений). По умолчанию параметр установлен TRUE.
Logical ch num - номер канала АЦП, в номере канала АЦП передается также диапазон измерения (например в модуле E14-140 есть четыре диапазона измерения АЦП), подробнее см. формат номера канала АЦП в руководстве программиста соответствующего модуля;

• Result - результат аналого-цифрового преобразования в вольтах;

• Success status - при успешном выполнении возвращается единица, в противном случае - ноль.

1 АЦП-)

LV_DoSingleAdcS

ample, vi

Use calibr

Logical ch Num

Success status

Result

LV_GetDigitLines.vi

Асинхронный опрос 16-ти входных цифровых линий.

- Еггог при успешном выполнении прибора возвращается единица, в противном случае ноль.
- Code младшие 16 бит содержат значения 16-ти входных цифровых линий.

LV_SetDigitLines.vi

Асинхронное управление 16-ю выходными цифровыми линиями.

- Code младшие 16-ть бит задают значения, которые будут установлены на 16-ть выходных цифровых линиях.
- Еггог при успешном выполнении прибора возвращается единица, в противном случае ноль.

Вспомогательные виртуальные приборы

	1 АЦП-)
	LV_ProcessAdc Point.vi
•	Use calibr
•	Channel num
٠	Data
Þ	Transform to vo
Ľ	Result
	Success status

ProcessAdcPoint.vi

ВП осуществляет преобразование кода АЦП в физическую величину с возможностью использования калибровочных коэффициентов, находящихся в энергонезависимой памяти.

- Use calibr значение TRUE включает использование калибровочных коэффициентов;
- Channel num логический номер канала АЦП (должен содержать в себе информацию и диапазоне измерения, на котором было осуществлено аналого-цифровое преобразование);
- Data введенный код АЦП;
- Transform to volt значение TRUE включает режим преобразования в вольты.
- Result результат выполнения ВП, содержащий преобразованное значение;
- Success status при успешном выполнении прибора возвращается единица, в противном случае ноль.

LV_DecimateArra yData.vi

Input data

Output data

LV_DetectTrigIdx

.vi

Data

Irig leve

TrigIdx

CalculateScreenResolution.vi

Определяет разрешение экрана, т.е. количество точек исходного сигнала, которые могут отобразиться на экране.

- Max screen resolution максимальное разрешение экрана;
- Range диапазон по шкале времени (количество клеток);
- Sec div цена деления клетки по шкале времени, сек.
- Resolution значение разрешения экрана, например, 100.

LV_DecimateArrayData.vi

Прореживает массив в заданное количество раз. Используется для работы развертки сигнала по шкале времени.

- Decimation factor коэффициент прореживания;
- Input data исходные данные.
- Output data полученный массив.

LV_DetectTrigIdx.vi

В массиве исходного сигнала определяет индекс элемента удовлетворяющего условию срабатывания триггера.

- Data массив данных сигнала;
- Trig level уровень срабатывания триггера.
- Trig idx индекс элемента удовлетворяющего условию срабатывания триггера.

CreateScreenFrame.vi

Формирование образа экрана и обеспечение стабилизации сигнала по триггеру.

٠	Frame	in	data –	входные	данные;
---	-------	----	--------	---------	---------

- Index in количество данных в буфере экрана до вызова функции;
- Trig idx индекс элемента удовлетворяющего условию срабатывания триггера;
- X resolution разрешение по шкале времени.
- Frame out data сформированный образ экрана;
- Index out количество данных в буфере экрана после вызова функции.

	CreateScreenFr
	diffe.vi
٠	Frame in data
•	Index in
•	Input Data
٠	Trig idx
٠	X resolution
	Frame out data
	Index out

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание 1. Построение системы термостатирования.

- 1. Подключите интерфейсный модуль Е14-440 к компьютеру.
- 2. Установите драйвер модуля.
- 3. Откройте библиотеку модуля lview.llb

😰 LLB Manager	
File Edit View Favorites Help	
oð 18 x 10 x R 15	
c:\Lab_examples\	 C
Name	~
💽 Oscillograph.vi	
WaveGenerator.vi	
💽 Асинхронный ввод вывод.vi	
🔜 Цифровые линии.vi	
CalculateScreenResolution.vi	
🛋 CreateScreenFrame.vi	
🔜 LV_CloseModule.vi	
🔜 LV_CreateChannel.vi	
🔜 LV_DecimateArrayData.vi	
🔜 LV_DetectTrigIdx.vi	
🔜 LV_DoSingleAdcSample.vi	

4. Рассмотрите работу библиотечных примеров виртуальных приборов: "Oscillograph.vi", "Асинхронный ввод вывод.vi" и "Цифровые линии.vi"

Примечание: Правила работы в среде LabView рассмотрены в лабораторной работе 06.05 "Среда разработки и выполнения программ LabView".

5. Используя примеры "Асинхронный ввод вывод.vi", "Цифровые линии.vi" и следующие диаграммы соберите систему термостатирования релейного типа с каналом измерения влажности.

Рис. 8. Пример виртуального прибора системы термостатирования

Рис. 9. Пример блок схемы виртуального прибора системы термостатирования

- 6. Обеспечьте работоспособность системы термостатирования в реальном времени.
- 7. Снимите рабочие характеристики: переходный процесс, точность поддержания температуры, период и амплитуду автоколебаний температуры, качество фильтрации температурных данных,
- 8. Найдите пути увеличения точности поддержания температуры. Поверьте свои гипотезы.

Задание 2. Запись результатов термостатирования в XML файл.

1. Добавьте в систему термостатирования блок записи данных "Waveform Chart" Для этого щелкните правой кнопкой мыши по блоку модели "Waveform Chart" и далее

2. Установите блок записи вне поля "While Loop", например, во втором поле структуры "Flat Sequency Structure", там где находится модуль LV_CloseModule.vi.

3. Убедитесь, что данные записываются в файл XML, находящейся в скрытом (hidden) каталоге пользователя Local Settings.

▼c:\Documents and Settings\ \Local Settings\Ter	mp*.*
Name	+ Ext
📅 TemperatureResults	xml

- 4. Установите кнопку на виртуальном приборе, которая дает разрешение на запись.
- 5. Проверьте работу кнопки (блокирование/разрешение) записи в файл.

контрольные вопросы

- 1. Для чего предназначена среда LabView?
- 2. Почему асинхронный режим чтения данных через интерфейсный модуль работает почти в 1000 раз медленнее, чем режим синхронного (потокового) чтения данных?
- 3. Подходит ли режим синхронного чтения данных для построения обратной связи контура управления? Почему?
- 4. Cpaвните LabView и MatLAB.
- 5. Можно ли использовать LabView для расчета систем управления.
- 6. От чего зависит точность поддержания температуры лабораторной системы термостатирования?
- 7. Что определяет частоту автоколебаний системы термостатирования?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Работа с модулями фирмы L-CARD в среде LabView. Инструкция по применению. ЗАО Л-Кард. Современные средства измерения и контроля. www.lcard.ru
- 2. Устройства для мобильных систем, E14-440, Внешний модуль АЦП/ЦАП/ТТЛ на шину USB 1.1, Руководство пользователя, Москва. Май 2008 г.