DR. BOB DAVIDOV

Система термостатирования на базе USB интерфейса Lcard E14-440 (S-function)

Цель работы: Освоить канал связи среды разработки системы управления Simulink (S-function CPP DLL) с внешней средой компьютера (USB Lcard E14-440) для построения систем реального времени.

Задача работы: Построить действующую систему термостатирования на базе модели Simulink и интерфейса S-function.

Приборы и принадлежности:.Simulink, USB устройство ввода/вывода E14-440, Датчик температуры; Твердотельное реле 10А/240V; Нагревательный элемент от 60 до 2000 Вт. Персональный компьютер.

ОБЩИЕ СВЕДЕНИЯ

В работе освещаются следующие темы.

- Структурная схема системы термостатирования
- Внешние компоненты системы термостатирования
- Структура S функции simulink
- Пример S функции взаимодействия simulink с USB модулем E14-440
- Пример компиляции S-функции
- Настройка simulink модели системы термостатирования на работу в реальном времени
- Вызов S-функции в simulink

СТРУКТУРНАЯ СХЕМА СИСТЕМЫ ТЕРМОСТАТИРОВАНИЯ

Взаимодействие среды разработки Simulink с USB модулем ввода –вывода через S-функцию поясняется на примере реальной системы термостатирования включающей виртуальные (программные) модули, аппаратные средства и физические компоненты системы. Структурная схема примера системы термостатирования показана на Рис. 1. Ее виртуальная часть (модель Simulink) включает задатчик температуры, фильтр, блок рассогласования температуры, регулятор, реле. Физические компоненты – это USB модуль ввода вывода E14-440, твердотельное реле PF240D25, лампа накаливания и датчик температуры LM 335. Связь компьютерной модели с внешними физическими устройствами выполнена через блок S-функции модели и C++ динамические библиотеки модуля E14-440 (см. Рис. 2)

Рис. 1. Структурная схема системы термостатирования

Рис. 2. Структура программного шлюза данных Модель Simulink – Модуль Lcard.

Рис. 3. Физические компоненты системы термостатирования.

ВНЕШНИЕ КОМПОНЕНТЫ СИСТЕМЫ ТЕРМОСТАТИРОВАНИЯ

Модуль E14-440 (Рис. 4) является универсальным программно-аппаратным устройством для использования со стандартной последовательной шиной USB и предназначен для построения многоканальных измерительных систем ввода, вывода и обработки аналоговой и цифровой информации в составе персональных IBM-совместимых компьютеров. Модуль *E14-440* внесен в Государственный реестр средств измерений.

Рис. 4. Внешний вид модуля Е14-440.

Рис. 5. Внешние разъемы модуля Е14-440 (аналоговый – слева, цифровой - справа).

Сигнал	Общая точка	Направление	Назначение
IN<116>	Digital GND	Вход	16 <u>ти</u> битный цифровой вход: IN1 – младший бит (0 <u>ой</u> бит), IN16 – старший бит (15 <u>ый</u> бит).
OUT<116>	Digital GND	Выход	16 <u>ти</u> битный цифровой выход: ОUT1 – младший бит (0 <u>ой</u> бит), OUT16 – старший бит (15 <u>ый</u> бит).
Digital GND			Цифровая земля.
+5 B	Digital GND	Выход	Выход нестабилизированного напряжения +5 В для питания внешних цепей (берётся прямо с USB кабеля). Не более 40 мА.
+3.3 B	Digital GND	Выход	Выход стабилизированного напряжения +3.3 В для питания внешних цепей. Не более 10 мА.
INT	Digital GND	Вход	 Вход внешней цифровой синхронизации сигнала; Совместим с выходным лог. уровнем TTL/CMOS элементов с напряжением питания +5 В.

Табл. 0-1. Цифровой разъём DRB-37F модуля E14-440

Датчик температуры LM35: времением

Рис. 6. Спецификация датчика температуры LM35.

Твердотельное реле PF240D25

Рис. 7. Спецификация твердотельного реле PF240D25.

СТРУКТУРА S ФУНКЦИИ SIMULINK

S-function - оболочка СРР программы для работы в среде Simulink содержит следующие основные функции.

- static void mdlInitializeSizes(SimStruct *S) Определяет S-function, задает характеристики блока: количество входных и выходных портов, состояния и т.д.
- static void mdlInitializeSampleTimes(SimStruct *S) Эта функция используется, чтобы определить шаг моделирования для S-функции. Необходимо установить тот же шаг как и в функции ssSetNumSampleTimes.
- static void mdlStart(SimStruct *S)
 Эта функция вызывается один раз при запуске модели. Чтобы минимизировать время чтения/записи данных модуля в эту функцию целесообразно включить операции библиотеки Lusbapi по установке связи с модулем E14-440.

{GetDllVersion;	CreateLInstance;	OpenLDevice;	GetModuleHandle;
GetModuleName;	GetUsbSpeed;	LOAD_MODULE;	TEST_MODULE;
GET_MODULE_DESCRIP	TION; GET_ADC_PARS;	SET_ADC_PARS; ENABLE	_TTL_OUT }

• mdlOutputs(SimStruct *S, int_T tid)

Здесь выполняются операции чтения и записи в порты блока S-function. Сюда включены операции чтения АЦП (ADC_SAMPLE) и записи TTL сигналов (TTL_OUT) модуля E14-440

```
    mdlGetSimState(SimStruct* S)
        {
        return mxCreateDoubleScalar(0);
        }
        mdlSetSimState(SimStruct* S, const mxArray* ma)
        {
        }
        mdlTerminate(SimStruct *S)
        Эта функция выполняет необходимые операции после
```

Эта функция выполняет необходимые операции после окончания моделирования. В нашем случае, выполняются функции которые отключают модуль E14-440 (ENABLE_TTL_OUT; ReleaseLInstance)

ПРИМЕР S ФУНКЦИИ ВЗАИМОДЕЙСТВИЯ SIMULINK C USB МОДУЛЕМ E14-440

```
Файл: Lcard_ABC_sfun.cpp
// Lcard ABC sfun.cpp
// reads ADC ("control" port), pass the results to the S-function output
// reads S-function input, sent it to the Lcard TTL output, for example,
// when input is 0/3 the first and second TTL outputs is 0 or 1,
// when input is 0/1 TTL1 output is 0/1 TTL2 output is 0,
// when input is 0/2 TTL1 output is 0 TTL2 output is 0/1
// To build this mex function in MatLAB use: mex Lcard ABC sfun.cpp Lusbapi.lib
// Lusbapi.dll must be in folder with MDL file containing Lcard ABC sfun.mexw32
#define S FUNCTION LEVEL 2
#define S FUNCTION NAME Lcard ABC sfun // **** MUST be named as MEX function
#include "Lusbapi.h" // заголовочный файл библиотеки Lusbapi
// Need to include simstruc.h for the definition of the SimStruct and
// its associated macro definitions.
#include "simstruc.h"
#define IS PARAM DOUBLE(pVal) (mxIsNumeric(pVal) && !mxIsLogical(pVal) &&\
!mxIsEmpty(pVal) && !mxIsSparse(pVal) && !mxIsComplex(pVal) && mxIsDouble(pVal))
#define CHANNELS QUANTITY
                                  (0x1)
                // версия библиотеки
DWORD DllVersion;
ILE440 *pModule;
                // указатель на интерфейс модуля
MODULE_DESCRIPTION_E440 md; // структура с информацией о модуле
HANDLE ModuleHandle; // дескриптор устройства
char ModuleName[7]; // название модуля
BYTE UsbSpeed;
                // скорость работы шины USB
MODULE_DESCRIPTION_E440 ModuleDescription; // структура с полной информацией о
модуле
```

```
ADC_PARS_E440 ap;
                 // структура параметров работы АЦП модуля
WORD ReadThreadErrorNumber; // номер ошибки при выполнении сбора данных
SHORT ADC_control = 0x21; // First ADC, +/-10V, ADC mode: 1 == 32GND
SHORT AdcSample;
                       // отсчёты АЦП
WORD TTL 16 Input;
                      //Input of 16 TTL
static void mdlInitializeSizes(SimStruct *S)
11
     The sizes information is used by Simulink to determine the S-function
11
     block's characteristics (number of inputs, outputs, states, etc.).
{
   // No expected parameters
   ssSetNumSFcnParams(S, 0);
    // Parameter mismatch will be reported by Simulink
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
       return;
    }
    // Specify I/O
   if (!ssSetNumInputPorts(S, 1)) return;
      ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);
   ssSetInputPortDirectFeedThrough(S, 0, 1);
   if (!ssSetNumOutputPorts(S,1)) return;
   ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);
   ssSetNumSampleTimes(S, 1);
   // Reserve place for C++ object
   ssSetNumPWork(S, 1);
 // ssSetSimStateCompliance(S, USE_CUSTOM_SIM_STATE);
   ssSetOptions(S,
                SS OPTION WORKS WITH CODE REUSE
                SS_OPTION_EXCEPTION_FREE_CODE);
}
static void mdlInitializeSampleTimes(SimStruct *S)
// This function is used to specify the sample time(s) for your
11
    S-function. You must register the same number of sample times as
11
    specified in ssSetNumSampleTimes.
{
   ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
   ssSetOffsetTime(S, 0, 0.0);
   ssSetModelReferenceSampleTimeDefaultInheritance(S);
}
#define MDL_START
static void mdlStart(SimStruct *S)
    This function is called once at start of model execution. If you
11
11
    have states that should be initialized once, this is the place to do it.
{
```

```
// Start of Lcard Connection
      // ****
                                    *****
      WORD i;
      // check version of used Lusbapi.dll library
      if((DllVersion = GetDllVersion()) != CURRENT_VERSION_LUSBAPI)
      {
            char String[128];
            printf(String, "Lusbapi.dll Version Error!!!\n Current: %lu.%lu.
Required: %1u.%1u",
                  DllVersion >> 0x10, DllVersion & 0xFFFF,
                  CURRENT_VERSION_LUSBAPI >> 0x10, CURRENT_VERSION_LUSBAPI &
0xFFFF);
      }
      11
            else printf(" Lusbapi.dll Version --> OK\n");
      // получим указатель на интерфейс модуля
      pModule = static_cast<ILE440 *>(CreateLInstance("e440"));
      if(!pModule) {mexErrMsgIdAndTxt("MATLAB:mexcpp:modintf", " Module Interface
--> Bad");
      }
      11
            else printf(" Module Interface --> OK\n");
      // попробуем обнаружить модуль E14-440 в первых
MAX_VIRTUAL_SLOTS_QUANTITY_LUSBAPI виртуальных слотах
      for(i = 0x0; i < MAX VIRTUAL SLOTS QUANTITY LUSBAPI; i++) if(pModule-</pre>
>OpenLDevice(i)) break;
      // что-нибудь обнаружили?
      if(i == MAX_VIRTUAL_SLOTS_QUANTITY_LUSBAPI)
            printf(" OpenLDevice(%u) --> WRONG\n", i);
            else printf(" OpenLDevice(%u) --> OK\n", i);
      11
      // попробуем прочитать дескриптор устройства
      ModuleHandle = pModule->GetModuleHandle();
      if(ModuleHandle == INVALID_HANDLE_VALUE)
            printf(" GetModuleHandle() --> Bad\n");
            else printf(" GetModuleHandle() --> OK\n");
      11
      // прочитаем название модуля в обнаруженном виртуальном слоте
      if(!pModule->GetModuleName(ModuleName))
            printf(" GetModuleName() --> Bad\n");
      11
            else printf(" GetModuleName() --> OK\n");
      // проверим, что это 'E14-440'
      if(strcmp(ModuleName, "E440"))
            printf(" The module is not 'E14-440'\n");
            else printf(" The module is 'E14-440'\n");
      11
      // попробуем получить скорость работы шины USB
      if(!pModule->GetUsbSpeed(&UsbSpeed))
            printf(" GetUsbSpeed() --> Bad\n");
            else printf(" GetUsbSpeed() --> OK\n");
      11
      // теперь отобразим скорость работы шины USB
      11
           printf(" USB is in %s\n", UsbSpeed ? "High-Speed Mode (480 Mbit/s)"
: "Full-Speed Mode (12 Mbit/s)");
```

// теперь попробуем загрузить из соответствующего ресурса

```
// библиотеки Lusbapi код драйвера LBIOS
     if(!pModule->LOAD_MODULE())
           printf(" LOAD_MODULE() --> Bad\n");
           else printf(" LOAD_MODULE() --> OK\n");
     11
     // проверим загрузку модуля
     if(!pModule->TEST MODULE())
           printf(" TEST MODULE() --> Bad\n");
           else printf(" TEST_MODULE() --> OK\n");
     11
     // получим информацию из ППЗУ модуля
     if(!pModule->GET_MODULE_DESCRIPTION(&ModuleDescription))
           printf(" GET_MODULE_DESCRIPTION() --> Bad\n");
     else printf(" E14-440 (s/n %s) is READY TO WORK\n",
md.Module.SerialNumber);
     // далее располагаются функции для непосредственного управления модулем
     // получим текущие параметры работы АЦП
     if(!pModule->GET_ADC_PARS(&ap))
           printf(" GET_ADC_PARS() --> Bad\n");
           else printf(" GET_ADC_PARS() --> OK\n");
     11
     // установим желаемые параметры работы АЦП
     ap.IsCorrectionEnabled = true;
                                                  // разрешим корректировку
данных на уровне драйвера DSP
     ap.InputMode = NO_SYNC_E440; // обычный сбор данных безо
всякой синхронизации ввода
     ap.ChannelsQuantity = CHANNELS_QUANTITY; // один активный канал
     // формируем управляющую таблицу
     ap.ControlTable[0] = (WORD)(ADC_control);
     ap.AdcRate = 100.0;
                                                             // частота
работы АЦП в кГц (max 400.0)
     ap.InterKadrDelay = 0.0;
                                                       // межкадровая
задержка в мс
     ap.AdcFifoBaseAddress = 0x0;
                                                 // базовый адрес FIFO
буфера АЦП в DSP модуля
     ap.AdcFifoLength = MAX_ADC_FIFO_SIZE_E440; // длина FIFO буфера АЦП в
DSP модуля
     // будем использовать фирменные калибровочные коэффициенты, которые
хранятся в ППЗУ модуля
     ap.AdcOffsetCoefs[0] = ModuleDescription.Adc.OffsetCalibration[0];
     ap.AdcScaleCoefs[0] = ModuleDescription.Adc.ScaleCalibration[0];
     // передадим требуемые параметры работы АЦП в модуль
     if(!pModule->SET_ADC_PARS(&ap))
           printf(" SET_ADC_PARS() --> Bad\n");
     // разрешение цифровых выходных линий
     if(!pModule->ENABLE TTL OUT(TRUE)) printf("\n\n TTL OUT PERMISSION -->
Bad n");
```

```
// End of Lcard Connect
                         // **************
}
static void mdlOutputs(SimStruct *S, int_T tid)
  In this function, you compute the outputs of your S-function block.
11
{
   // Get data addresses of I/O
   InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);
           real T *y = ssGetOutputPortRealSignal(S, 0);
     // Read/Write Lcard
     // вывод на внешние цифровые линии 0x0000 .. 0xFFFF / медленная операция
(нес. десятков Гц)
     if(!pModule->TTL_OUT((WORD)static_cast< int >(*u[0]))) printf("\n\n TTL
OUTPUT --> Bad\n");
     if(!pModule->ADC_SAMPLE(&AdcSample, (WORD)(ADC_control)))
         printf("\n\n ADC_SAMPLE(, 0) --> Bad\n");
         // передача АШП сигнала в выходной порт S-function
     End of Read/Write Lcard
    11
     y[0] = AdcSample;
}
/* Define to indicate that this S-Function has the mdlG[S]etSimState mothods */
#define MDL_SIM_STATE
static mxArray* mdlGetSimState(SimStruct* S)
{
// see ..\MATLAB\R2012a\simulink\src\sfun_cppcount_cpp.cpp and
sfun_cppcount_cpp.h
    return mxCreateDoubleScalar(0);
}
static void mdlSetSimState(SimStruct* S, const mxArray* ma)
// see ..\MATLAB\R2012a\simulink\src\sfun_cppcount_cpp.cpp and
sfun_cppcount_cpp.h
}
static void mdlTerminate(SimStruct *S)
11
   In this function, you should perform any actions that are necessary
   at the termination of a simulation. For example, if memory was
11
11
   allocated in mdlStart, this is the place to free it.
{
     // Перевод цифровых выходных линий в третье, высокоимпедансное, состояние
    if(!pModule->ENABLE_TTL_OUT(FALSE)) printf("\n\n TTL OUT PERMISSION -->
Bad n");
     // Disconnect Lcard
     //освободим интерфейс модуля
```

```
printf("\n\n");
    if(!pModule->ReleaseLInstance())
    ł
         printf(" ReleaseLInstance() --> Bad\n");
    }
    else
    {
         printf(" ReleaseLInstance() --> OK\n");
         // обнулим указатель на интерфейс модуля
         pModule = NULL;
    }
    // End of Lcard disconnection
    }
// Required S-function trailer
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c"
                    /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif
```

ПРИМЕР КОМПИЛЯЦИИ S-ФУНКЦИИ

S-функция C++ должна быть откомпилирована в mexw32 файл который вызывается соответствующим блоком Simulink модели.

Откомпилировать C++ S-функцию можно командой МатЛАБ:

>> mex Lcard_ABC_sfun.cpp Lusbapi.lib

>>

ВНИМАНИЕ!

- 1. Команды mex для Lcard_ABC_sfun.cpp выполнялась в MATLAB R2012a.
- 2. Для успешной компиляции в рабочем каталоге должны находиться следующие файлы:

€ []		<dir></dir>	
🚰 Lcard_ABC_sfun	срр	10 414	
🛅 Lusbapi	h	49 775	
🛅 LusbapiTypes	h	6 614	
🔛 🔛 🔛 😪	lib	2 178	

В результате компиляции в рабочем каталоге должен появиться файл Lcard_ABC_sfun.mexw32

Построить DLL mexw32 можно и в среде программирования Microsoft Visual C++ в следующей последовательности (в примере использовалась среда Visual Studio 2008).

1. В среде Microsoft Visual C++ Создайте новый "пустой" (Empty) проект Win32 DLL библиотеки в рабочей папке, например, Read_ADC_1

Win32 Application Wizard - Read_ADC_1				
Application Settings				
Overview Application Settings	Application type: <u>Windows application</u> Console application <u>DLL</u> <u>Static library</u> Additional options: <u>Empty project</u> <u>Export symbols</u> <u>Precompiled header</u>	Add common header files for:		

2. Вставьте в проект S-функцию – программу Lcard_ABC_sfun.cpp

 Включите в проект новый *.def файл содержащий: LIBRARY "имя файла" EXPORTS mexFunction //-- for a C MEX-file

Solution Explorer - Lcard_ABC_sfun $~~$ $~~$ \clubsuit	×	(sfun.def) Lcard_ABC_sfun.cpp
🖷 📴 🕹		LIBRARY "sfun"
Solution 'sfun_cppcount_cpp' (1 project)		EXPORTS mexFunction
🖃 📅 Lcard_ABC_sfun		
💼 📄 Header Files		
🚞 Resource Files		
🖮 🗁 Source Files		
Card_ABC_sfun.cpp		

4. Подключите к проекту заголовочные файлы библиотеки модуля E14-440 Lusbapi.h и LusbapiTypes.h и убедитесь, что def файл подключен к проекту

Lcard_ABC_sfun Property Pages	5		
Configuration: Active(Debug)	Platform: Active(Win32)	Configuration Manager	
Common Properties Configuration Properties	Additional Dependencies	libmx.lib libmex.lib libmat.lib c:\Lab_examples\07.03	
General Debugging	Ignore Specific Library Module Definition File	sfun def	
⊕ C/C++ ⊜ Linker	Add Module to Assembly Embed Mapaged Resource File	sidnat.	
General	Force Symbol References		
···· Manifest File ···· Debugging	Assembly Link Resource		
System Optimization	Additional Depend	encies	? 🛛
Embedded IDL Advanced	ibmx.lib		
· Command Line ⊡ Manifest Tool	libmat.lib c:\Lab_examples\07.0	3_Thermostatic_system_Lcard_5_function\Lcard_ABC_sfun\Lcard_ABC	:_sfun(Lusbapi.lib)
XML Document Generator Browse Information	<		>
🕀 Build Events			

Lcard_ABC_sfun Property Pages		? 🛛
Configuration: Active(Debug)	Platform: Active(Win32)	Configuration Manager
🖅 Common Properties	Output File	\$(OutDir)\\$(ProjectName).mexw32
Configuration Properties	Show Progress	Not Set
General	Version	
Debugging	Enable Incremental Linking	Yes (/INCREMENTAL)
<u>∎</u> C/C++	Suppress Startup Banner	Yes (/NOLOGO)
	Ignore Import Library	No
General	Register Output	No
Input	Per-user Redirection	No
Manifest File	🖌 Additional Library Directories 🧻 — 💴 🚽	c:\MATLAB\R2007a\extern\lib\win32\microsoft\
Debugging	Link Library Dependencies	Yes
	Use Library Dependency Inputs	No

5. Подключите к проекту директорию файла mexversion.rc MaTЛAБ и Simulink

Lcard_ABC_sfun Property Pages	Ĵ.	2 🗙
Configuration: Active(Debug)	Platform: Active(Win32)	Configuration Manager
Common Properties Configuration Properties	Additional Include Directories — Resolve #using References	c:\MATLAB\R2007a\extern\include\;c:\MATLAB\R20
General Debugging	Debug Information Format Suppress Startup Banner	Program Database for Edit & Continue (/ZI) Yes (/nologo)
General	Warning Level Detect 64-bit Portability Issues	Level 3 (/W3) No
Preprocessor Code Generation	Treat Warnings As Errors Use UNICODE Response Files	No Yes
- Language - Precompiled Headers	Additional Include Director	ries ?
Output Files Browse Information Advanced		×++
Command Line	c:\MATLAB\R2007a\extern\includ c:\MATLAB\R2007a\simulink\includ	el jel
🖃 Manifest Tool	<	

6. Добавьте к определениям препроцессора **MATLAB_MEX_FILE**

Lcard_ABC_sfun Property Pages		? 🗙
Configuration: Active(Debug)	Platform: Active(Win32)	Configuration Manager
Common Properties	Preprocessor Definitions WIN32;_DEBUG;_W	'INDOWS;_USRDLL;LCARD_ABC_SFI
Configuration Properties	Ignore Standard Include Path No	
General	Generate Preprocessed File No	
Debugging	Keep Comments No	
General		
Optimization (Preprocessor)	Preprocessor Definitions	
Code Generation	_DEBUG _WINDOWS	
···· Precompiled Headers		
Output Files	MATLAB MEX FILE	
Browse Information		

7. Измените расширение выходного файла компилятора с dll на mexw32.

Lcard_ABC_sfun Property Pages					
Configuration: Active(Debug)	Platform: Active(Win32)	Configuration			
🕀 Common Properties	Output File	\$(OutDir)\\$(ProjectName), mexw32			
Configuration Properties	Show Progress	Not Set			
General	Version				
Debugging	Enable Incremental Linking	Yes (/INCREMENTAL)			
<u>⊞ C/C++</u>	Suppress Startup Banner	Yes (/NOLOGO)			
	Ignore Import Library	No			
General	Register Output	No			
Input	Por user Redirection	No			

8. Подключите библиотеки МатЛАБ matlabroot\extern\lib\win32\microsoft\ libmx.lib, libmex.lib, and libmat.lib и библиотеку модуля E14-440 Lusbapi

Read_ADC_1 Property Pages					
Configuration: Active(Debug)	Platform: Active(Win32)	Configuration Mar			
🕀 Common Properties	Output File	\$(OutDir)\\$(ProjectName).mexw32			
Configuration Properties	Show Progress	Not Set			
General	Version				
Debugging	Enable Incremental Linking	Yes (/INCREMENTAL)			
	Suppress Startup Banner	Yes (/NOLOGO)			
	Ignore Import Library	No			
General	Register Output	No			
Input	Per-user Redirection	No			
Manifest File	Additional Library Directories	c:\MATLAB\R2007a\extern\lib\win32\microsoft\			
Debugging	Link Library Dependencies	Yes			
Optimization	Use Library Dependency Inputs	No			

9. Откомпилируйте проект. В результате должен появиться файл Read_ADC_1.mexw32.

НАСТРОЙКА SIMULINK МОДЕЛИ СИСТЕМЫ ТЕРМОСТАТИРОВАНИЯ НА РАБОТУ В РЕАЛЬНОМ ВРЕМЕНИ

🖏 Configuration Parame	ters: T_system/Configuration (Active)	E	×
Select:	C Simulation time		^
Solver Data Import/Export	Start time: 0.0 Stop time: inf		
Optimization	C Solver options		
En Diagnostics	Type: Fixed-step Solver: discrete (no continuous states)	~	
Data Validity	Periodic sample time constraint: Unconstrained	~	
- Connectivity	Fixed-step size (fundamental sample time): smpl		
Compatibility	Tasking mode for periodic sample times: Auto	~	
Model Referencing	Higher priority value indicates higher task priority		
	Automatically handle data transfers between tasks		
🖨 - Real-Time Workshop			~
<			
	OK Cancel Help	Apply	

Рис. 8. Конфигурация модели. Шаг моделирования smpl установлен 0.05 сек, что с точностью выше 3-х % соответствует реальному времени операционной системы на тестируемом компьютере. На другом компьютере шаг моделирования, соответствующий реальному времени, составлял 0.25 сек. Время чтения АЦП модуля E14-440, в основном, определяется временем выполнения ADC_SAMPLE - функции однократного чтения библиотеки Lusbapi.

Main Callbacks History	Description	Main Callbacks History	Description
Model callbacks	Model initialization function:	Model callbacks	Simulation start function:
PreLoadFcn PostLoadFcn InitFcn*	smpl = 0.05	PreLoadFcn PostLoadFcn InitFcn* StartFcn*	t_Start = clock;
Main Callbacks History	Description		
Model callbacks	Simulation stop function:		
PreLoadFcn	t_Sim = clock - t_Start		
PostLoadFcn			
StopFcn*			

Рис. 9. Настройки модели Model Explorer. После остановки модели в окно команд выводится реальное время работы модели, которое следует сравнить с установленным временем моделирования.

Внимание! Соответствие времени моделирования реальному времени необходимо обеспечивать заданием величины шага моделирования. Шаг моделирования необходимо подобрать так, чтобы свести к минимуму разницу между временем моделирования (stop time) и реальным временем выполнения модели, которое вычисляется функцией t_Sim = clock – t_Start сразу по завершению моделирования.

Рис. 10. Временная зависимость температуры (верхний рисунок) от состояния лампы накаливания (вкл/выкл – нижний график) в контуре системы термостатирования. Малиновый график показывает сигнал на входе фильтра, желтый график верхнего рисунка – сигнал на выходе фильтра)

ВЫЗОВ S-ФУНКЦИИ В SIMULINK

S-функция должна находиться в рабочем каталоге модели.

Function Block Parameters: S-Function				
S-Function User-definable block. Blocks can be written in C, M (level-1), Fortran, and Ada and must conform to S-function standards. The variables t, x, u, and flag are automatically passed to the S-function by Simulink. You can specify additional parameters in the 'S-function parameters' field. If the S-function block requires additional source files for the Real-Time Workshop build process, specify the filenames in the 'S-function modules' field. Enter the filenames only; do not use extensions or full pathnames, e.g., enter 'src src1', not 'src.c src1.c'.				
Parameters				
S-function name: Lcard_ABC_sfun	Edit			
S-function parameters:				
S-function modules: "				
OK Cancel Help	Apply			

Рис. 11. Страница блока модели S-function.

ВНИМАНИЕ: Для успешного вызова S-функции необходимо, чтобы библиотека Lusbapi.dll находилась в рабочем каталоге (предпочтительно) или в папке динамических библиотек операционной системы (не желательно, но можно)

После редактирования S-функции ее необходимо откомпилировать. Для подключения новой откомпилированной S-функции к модели Simulnk необходимо

- 1. Закрыть МатЛАБ
- 2. Скопировать новую функцию в рабочий каталог модели.
- 3. Загрузить МатЛАБ.
- 4. Загрузить модель, содержащую S-функцию
- 5. Открыть блок функции.
- 6. Удалить имя из поля "S-function name" и нажать кнопку "Apply"
- 7. Ввести имя функции в поле "S-function name" и нажать кнопку "Apply"
- 8. Подключение отредактированной S-функции к модели Simulink завершено.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание 1. Построение системы термостатирования.

- 1. Соберите систему термостатирования (см. Рис. 1 и Рис. 3)
- 2. Настройте систему на работу в реальном времени (см. Рис. 18 и Рис. 9)
- 3. Запустите систему термостатирования.
- 4. Настройте фильтр (см. Рис. 1 и Рис. 10)
- 5. Оптимизируйте параметры регулятора (см. Рис. 1)
- 6. Зарегистрируйте параметры, характеризующие работу системы термостатирования (пример см. на Рис. 1): измерьте время переходного процесса, ошибку системы, период и амплитуду автоколебаний.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какова точность отсчета реального времени в построенной системы термостатирования?
- 2. Что определяет частоту дискретизации системы?
- 3. Перечислите пути увеличения точности системы термостатирования.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Программное обеспечение Lcomp Руководство программиста. Комплект ПО для разработки приложений (SDK)
- 2. Устройства для мобильных систем, E14-440, Внешний модуль АЦП/ЦАП/ТТЛ на шину USB 1.1, Руководство пользователя, Москва. Май 2008 г.
- 3. Dr. Bob Davidov. Компьютерные технологии управления в технических системах http://portalnp.ru/author/bobdavidov.